
ON THE BEILINSON–BLOCH–KATO CONJECTURE FOR POLARIZED MOTIVES

HAO PENG

Abstract. We study the Beilinson–Bloch–Kato conjecture for polarized motives. In the conjugate self-dual
case, we show that if the central L-value does not vanish, then the associated Bloch–Kato Selmer group
with coefficients in a suitable local field vanishes. In the self-dual analytic rank-zero case, we reduce the
conjecture to a conjecture in the endoscopic Rankin–Selberg case related to the orthogonal Gross–Prasad
periods.
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1. Introduction

The Beilinson–Bloch–Kato conjecture for motives vastly generalizes the rank part of the Birch–
Swinnerton-Dyer conjecture for elliptic curves. In this article, we study the Beilinson–Bloch–Kato
conjecture for motives associated with self-dual (resp. conjugate self-dual) automorphic representations of
GL2r(AF ), where F ⊂ C is a totally real number field (resp. a CM field).

Let Motrat(F,E) denote the pseudo-Abelian category of Chow motives over F with coefficients in a
number field E (see, for example, [And04]). For the complex conjugation c ∈ Gal(C/R), a polarization of
M is an isomorphism Mc ∼−→M∨(1) in the category Motrat(F,E). For any Chow motive M ∈ Motrat(F,E)
and any finite place λ of E, there is a λ-adic realization Mλ, which is a representation of Gal(F/F ) with
Eλ-coefficients. We consider the Bloch–Kato Selmer group

H1
f (F,Mλ) = ker

(
H1(F,Mλ)→

∏
w-`

H1(Iw,Mλ)×
∏
w|`

H1(Fw,Mλ ⊗Q`
Bcrys,`)

)
,

where ` is the underlying rational prime of λ and Bcrys,` is the `-adic crystalline period ring.
For example, if A is an Abelian variety over F of dimension g and M = h2g−1(A)(g) is the Albanese

motive of A with coefficient field Q, then H1
f (F,M`) is canonically isomorphic to

Q` ⊗Z`
lim←−
n

Sel`n(A/F )

for every rational prime `. Here Selk(A/F ) is the mod-k Selmer group of A over F for every positive integer
k.

Suppose M is a polarized motive in Motrat(F,E) and λ is a finite place of E. Conjecturally, the L-
function L(s,Mλ) attached to Mλ has a meromorphic continuation to the entire complex plane, satisfying a
functional equation

L(s,Mλ) = ε(M)c(M)−sL(−s,Mλ)
where ε(M) ∈ {±1} is the root number and c(M) is the conductor; see [Del79]. Assuming this conjectural
functional equation, we recall the following Beilinson–Bloch–Kato conjecture [BK90].

Conjecture (Beilinson–Bloch–Kato).
ords=0L(s,Mλ) = dimEλ

H1
f (F,Mλ)− dimEλ

H0(F,Mλ).

We focus on the analytic rank-zero case, that is, when L(0,Mλ) is nonzero.

1.1. The conjugate self-dual case. Let F ⊂ C be a totally imaginary quadratic extension of a totally
real number field F+ ⊂ R. We first state a less technical main result.

Theorem A. Let r be a positive integer and let A be a modular elliptic curve over F+. Suppose that F+ 6= Q
whenever r > 1, and that A has no complex multiplication over F . If the central critical value

L
(
r,Sym2r−1 AF

)
is nonzero, then for all but finitely many rational primes `, the Bloch–Kato Selmer group

H1
f

(
F, Sym2r−1 H1

ét(AF ,Q`)(r)
)

vanishes.

Remark 1.1.1. The finite set of rational primes ` that are excluded in Theorem A can be effectively bounded
in terms of F , A, and r. The condition F+ 6= Q is imposed because Hypothesis 3.2.3 on the cohomology of
unitary Shimura varieties is not yet known for N ≥ 4 if F+ = Q. This condition is not used elsewhere.

Remark 1.1.2. When r = 1, Theorem A recovers part of the Birch–Swinnerton-Dyer conjecture for AF . If,
in addition, F+ = Q, then this is covered by Kolyvagin’s work [Kol90], which introduced the Heegner point
Euler system; it uses the Gross–Zagier formula [GZ86] to pass to the analytic rank-one case. For F+ 6= Q,
the corresponding result was later established in [Zha01,Lon06,Lon07,Nek12].

When r = 1 and F+ = Q, there are other approaches to Theorem A. In [Kat04], Kato used p-adic
families of Beilinson elements in the K-theory of modular curves to construct Selmer classes via p-adic Hodge
theory, known as Kato’s Euler system. In [BD05], Bertolini and Darmon developed a different approach that
constructs Selmer classes via level-raising congruences on Shimura curves, known as the bipartite Euler system
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(see [How06] for a systematic formulation). Under mild additional assumptions, these yield alternative proofs
of Kolyvagin’s result that do not invoke the Gross–Zagier formula.

Theorem A is a special case of a more general result concerning the Bloch–Kato Selmer groups of Ga-
lois representations attached to conjugate self-dual automorphic representations. We first introduce the
automorphic representations we study.

Definition 1.1.3. An isobaric automorphic representation Π of GLN (AF ) with N ≥ 2 is called a (conjugate
self-dual) relevant automorphic representation if

(1) Π is conjugate self-dual in the sense that its contragredient Π∨ is isomorphic to Π ◦ c;
(2) for every Archimedean place w of F , Πw is isomorphic to the irreducible principal series repre-

sentation induced from the characters (arg1−N , arg3−N , . . . , argN−1), where arg : C× → C× is the
argument character defined by the formula arg(z) = z/

√
zz;

(3) either one of the following holds:
(a) Π is cuspidal.
(b) N is odd and Π is an isobaric sum of a character of GL1(AF ) with a cuspidal automorphic

representation of GLN−1(AF ).
A relevant representation Π is called almost cuspidal if it is not cuspidal, in which case we write Π = Π[⊞χ,

where χ is a conjugate self-dual character of F×\A×
F .

Remark 1.1.4. Note that our definition of relevant automorphic representations is slightly more general than
that of [LTX+22, Definition 1.1.3]: A representation Π of GLN (AF ) is relevant in their sense if and only if
it is cuspidal and relevant in our sense.

If Π is a relevant automorphic representation, then it is regular algebraic in the sense of [Clo90, Defin-
tion 3.12]. Moreover, it is well known that the Asai L-function L(s,Π′,As(−1)N

) is regular at s = 1 for each
isobaric factor Π′ of Π (see, for example, [FP23, Theorem 9.1]).

We now state our main result in terms of automorphic representations analogous to Theorem A.

Theorem B. Let r be a positive integer and Π be a relevant automorphic representation of GL2r(AF ). Let
E be a strong coefficient field of Π (see Definition 3.1.6). If the central critical value

L(1
2
,Π)

is nonzero, then for every admissible place λ of E with respect to Π, the Bloch–Kato Selmer group
H1
f (F, ρΠ,λ(r))

vanishes. Here ρΠ,λ is the Galois representation of F with coefficients in Eλ attached to Π as described in
Proposition 2.1.1 and Definition 3.1.6.

Remark 1.1.5. In the setting of the unitary Friedberg–Jacquet periods, M. Zanarella studied automorphic
representations Π in a framework close to ours, under the additional assumption that Π is self-dual [Zan24].
His argument relies on the conjecture of Leslie–Xiao–Zhang [LXZ25]; see also [LXZ25b] for recent progress
on this conjecture.

The notion of admissible places appearing in Theorem B is defined in Definition 5.1.6, which consists of
a long list of assumptions. It is expected that all but finitely many finite places are admissible (with respect
to Π). Indeed, we have the following family of abstract examples where all but finitely many finite places
are admissible.

Theorem C. Let r and Π be as in Theorem B. Suppose that
(1) F+ 6= Q if r > 1;
(2) There exists a finite place w of F such that Πw is supercuspidal;
(3) There exists a good inert place p of F+ (see Definition 3.3.3) such that Πp is a Steinberg representa-

tion.
Let E be a strong coefficient field of Π (see Definition 3.1.6). If the central critical value

L(1
2
,Π)
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is nonzero, then for all but finitely many finite places λ of E, the Bloch–Kato Selmer group
H1
f (F, ρΠ,λ(r))

vanishes.

Remark 1.1.6. In condition (b) of Theorem C, if F is Galois over Q or contains an imaginary quadratic field,
then a good inert place of F+ is just a finite place of F+ that is inert in F .

Using theta correspondence and a Burger–Sarnak type principle for Fourier–Jacobi periods on a pair of
global unitary group (U2r,U2r), we reduce Theorem B to the following theorem concerning central critical
values of Rankin–Selberg L-functions. Let n ≥ 2 be a positive integer. Denote by n0 and n1 the unique even
and odd numbers in {n, n+ 1}, respectively.

Theorem D. Let Π0,Π1 be relevant automorphic representations of GLn0(AF ) and GLn1(AF ), respectively,
such that Π0 is cuspidal and Π1 is almost cuspidal of the form Π1 = Π[

1⊞1 where 1 is the trivial representation
of GL1(AF ). Assume F+ 6= Q if n > 2, and assume there is a finite place w of F over a place of F+ inert
in F such that Π[

1,w is square-integrable. Let E ⊂ C be a strong coefficient field of both Π0 and Π1 (see
Definition 3.1.6). If the central critical value

L(1
2
,Π0) · L(1

2
,Π0 ×Π[

1)

is nonzero, then for every admissible place λ of E with respect to (Π0,Π1), the Bloch–Kato Selmer group

H1
f (F, ρΠ0,λ(n0/2))

vanishes.

Remark 1.1.7. Theorem D is analogous to one of the main results of [LTX+22] that concerns the analytic
rank-zero case, where they assumed that Π1 is relevant and cuspidal. Via the Gan–Gross–Prasad conjecture
[GGP12], which is established in our case in [BPCZ22], the theorem can be regarded as relating nonvanishing
unitary Gan–Gross–Prasad periods on a pair of unitary groups (U2r,U2r+1) to the vanishing of Bloch–Kato
Selmer groups.

Remark 1.1.8. The notion of admissible places appearing in Theorem D is defined in Definition 3.8.1, which
consists of a long list of assumptions. The admissibility condition here is weaker than the analogous admis-
sibility condition in [LTX+22, Definition 8.1.1]. It is expected that if the two automorphic representations
Π0 and Π1 are not correlated in terms of Langlands functoriality, then all but finitely many finite places of
E are admissible with respect to (Π0,Π1). For example, if we assume that

(1) F is Galois over Q or contains an imaginary quadratic field,
(2) for each α ∈ {0, 1}, there exists a finite place wα of F such that Πα,wα is supercuspidal, and
(3) there exists a finite place p+ of F+ underlying a unique place p of F , such that Π0,p is a Steinberg

representation and Π[
1,p is unramified with Satake parameter not containing 1,

then all but finitely many finite places of E are admissible with respect to (Π0,Π1); see Lemma 3.8.3.

1.2. The self-dual case. We now state analogous conjectures in the self-dual case. Let F ⊂ R be a totally
real number field.

Conjecture E. Let r be a positive integer and let A be a modular elliptic curve over F with no complex
multiplication over F . If the central critical value

L
(
r,Sym2r−1 A

)
is nonzero, then for all rational primes ` greater than an effective constant depending only on A and r, the
Bloch–Kato Selmer group

H1
f

(
F, Sym2r−1 H1

ét(AF ,Q`)(r)
)

vanishes.

Remark 1.2.1.
(1) Theorem A is implied by Conjecture E. In fact, we can even drop the assumption F+ 6= Q in

Theorem A if Conjecture E is true.
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(2) When r = 1, Conjecture E is established by Kolyvagin [Kol90] when F = Q using the Gross–Zagier
formula [GZ86], and later generalized to the case when F 6= Q in [Zha01,Lon06,Lon07,Nek12].

(3) When r = 2 and F = Q, Conjecture E is known by work of H. Wang [Wan22] and N. Sweeting
[Swe25] using the bipartite Euler system method.

When r·[F : Q] is even, it appears that Conjecture E would follow from Theorem A provided the following
analytic statement holds:
(NVr): For any elliptic curve A over F with no complex multiplication over F such that L

(
r,Sym2r−1 A

)
is

nonzero, there exists a totally negative element D ∈ F× effectively bounded by F,A, and r satisfying
that the central critical value

L
(
r,Sym2r−1 AD

)
is nonzero, where AD is the twist of A by the quadratic extension F (

√
D)/F .

If r = 1, (NV1) holds by the nonvanishing theorem of Friedberg–Hoffstein for quadratic twists with prescribed
local behavior; cf. [FH95, Theorem B]. For r ≥ 2, (NVr) appears to lie beyond current techniques; even the
case r = 2 seems difficult (see, for example, [RY23,BFK+23,HJL23]).

Alternatively, using theta correspondence and a Burger–Sarnak type principle for Fourier–Jacobi periods
on the symplectic-metaplectic pair (Sp2r, S̃p2r), we show that Conjecture E can be reduced to another
conjecture of Gan–Gross–Prasad type, relating nonvanishing of orthogonal Gross–Prasad periods to vanishing
of Bloch–Kato Selmer groups.

Conjecture F. Let r be a positive integer and let A be an elliptic curve over F with no complex multipli-
cation over F . Suppose that there exist

(1) a self-dual automorphic representation Π of GL2r+1(AF ) that is either cuspidal or an isobaric sum of
a self-dual cuspidal automorphic representation of GL2r(AF ) with a nontrivial quadratic character
of F×\A×

F ;
(2) a pair (V,V]) in which V is a quadratic space of dimension 2r+ 1 over F that is positive definite at

every Archimedean place of F satisfying −disc(V) /∈ F×2, and V] := V⊕ Fe where e has norm 1;
(3) cuspidal automorphic representations π0 ⊂ A0(O(V)) and π1 ⊂ A0(O(V])) with trivial Archimedean

components and with Arthur parameters Sym2r−1 A and Π ⊞ 1, respectively (see Definition 4.4.2);1
and

(4) cusp forms f0 ∈ π0 and f1 ∈ π1,
such that the orthogonal Gross–Prasad period

(1.1) PGP(f0, f1) :=
∫

O(V)(F )\O(V)(AF )
f0(h)f1(ι(h))dh

is nonzero. Here ι : O(V) ↪→ O(V]) is the embedding induced by the inclusion V ⊂ V]. Let E ⊂ C
be a strong coefficient field of Π (see Definition 2.2.4). Then there exists an effective constant N(F,A, r)
depending only on F , A, and r, such that the Bloch–Kato Selmer group

H1
f

(
F, Sym2r−1 H1

ét(AF ;Q`)(r)
)

vanishes for all rational primes ` > N(F,A, r) underlying a preadmissible place λ of E with respect to (A,Π).

Remark 1.2.2. When r = 1 and F = Q, Conjecture F is known by results of Y. Liu [Liu16] under suitable
conditions, obtained using Hirzebruch–Zagier cycles and the bipartite Euler system method.

Remark 1.2.3. The notion of preadmissible places appearing in Conjecture F is a preliminary notion defined
in Definition 5.2.6. It is expected that, if Π is not correlated to A in the sense of Langlands functoriality,
then all but finitely many finite places of E are admissible with respect to (A,Π). For example, if there exist
finite places p, q of F such that

(1) A has split multiplicative reduction at p,
(2) Πp is unramified with Satake parameter of the form {−1, α±1

1 , . . . , α±1
r } satisfying αi /∈ {±1} for

every 1 ≤ i ≤ r, and

1Here 1 denotes the trivial automorphic character of GL1(AF ).
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(3) Πq is either supercuspidal or an isobaric sum of a self-dual supercuspidal representation with a
quadratic character,

then there exists an effective constant N(F,A,Πp,Πq) depending on F,A,Πp, and Πq such that every finite
place λ of E with underlying prime ` greater than N(F,A,Πp,Πq) is preadmissible with respect to (A,Π);
see Lemma 5.2.7.

Theorem G. If Conjecture F holds, then Conjecture E holds.

Remark 1.2.4. In view of the Gross–Prasad conjecture for orthogonal groups [GP92,GP94,II10], Conjecture F
may be viewed as a natural analogue of Theorem D. It will be studied in the author’s forthcoming Ph.D.
thesis [Pen26] via orthogonal Shimura varieties and bipartite Euler system method, along the lines of the
argument for Theorem D (see §1.3). In particular, for F = Q we expect to establish Conjecture F, and hence
also Conjecture E.

1.3. Strategy of proof. The main innovation of this paper is an extensive use of local and global seesaw
identities to deduce Theorem B (resp. Conjecture E) from Theorem D (resp. Conjecture F). The method
of seesaw has proved to be a very useful tool in theta lifting of automorphic representations, yet our work
seems to be the first to directly apply it to study arithmetic questions.

For simplicity, we restrict to the self-dual case and assume F = Q. Let r be a positive integer and A
be an elliptic curve over Q. By Newton–Thorne [NT21], the odd symmetric power Sym2r−1 A is modular
and associated with a self-dual cuspidal representation Π0 of GL2r(AQ). Rather than viewing Π0 as the
standard functorial transfer of a cuspidal automorphic representation on a special orthogonal group SO2r+1
as in previous work [Liu16, LTX+22, Zan24, Swe25], we regard Π0 as a generic elliptic A-parameter for the
metaplectic group S̃p2r in the Shimura–Waldspurger correspondence framework of [GI18]. In particular,
by Arthur’s multiplicity formula proved by Gan–Ichino [GI18], there exists a genuine cuspidal automorphic
representation σ̃0 of S̃p2r(AQ) with A-parameter Π0.2 Since the central critical value L( 1

2 ,Π0) is nonzero
(and Π0 is tempered at every rational prime), the Rallis inner product formula [Yam14], together with local
conservation relations, yields a positive definite quadratic space V2r+1 of dimension 2r+ 1 over Q such that
the global theta lift of σ̃0 to O(V2r+1)(AQ) is a nonzero cuspidal automorphic representation π0 with trivial
Archimedean components.

We use the seesaw diagram

Sp2r ×Sp2r O(V2r+2)

Sp2r O(V2r+1)×O(V1),

where V1 = Qe is a 1-dimensional quadratic space with ‖e‖ = 1, and V2r+2 = V2r+1 ⊕ V1. Fix a
sufficiently large rational prime ` and a nontrivial additive character ψ of Q\AQ. Suppose we can find a
cuspidal automorphic representation σ1 of Sp2r(AQ) such that the Fourier–Jacobi period integral

FJ (ϕ̃0, ϕ1;φ) :=
∫

Sp2r(Q)\ Sp2r(AQ)
ϕ̃0(g)ϕ1(g)θ(g;φ)dg

is nonzero on the pair (σ1, σ̃0) for some Schwartz function φ, where θ(g;φ) is the theta function. Then it
follows from the global seesaw identity that the theta lift of σ1 to O(V2r+2) is a nonzero cuspidal automorphic
representation π1, and the orthogonal Gross–Prasad period integral (1.1) is nonzero on the pair (π0, π1). If
we can further guarantee that

(1) π1 has trivial Archimedean component,
(2) the Arthur parameter of π1 is of the form Π ⊞ 1 as in the statement of Conjecture F; and
(3) ` underlies a preadmissible place λ of E with respect to (A,Π),

then Conjecture E follows.
The shape of π1 is determined by the shape of σ1 via Prasad’s conjecture [AG17]. Fix a large prime p.

If the L-parameter of σ1,p contains a chosen 2r-dimensional irreducible local Galois representation φp as a

2In fact, we twist Π0 by a nontrivial quadratic character so that the quadratic space V2r+1 (defined below) satisfies
−disc(V2r+1) /∈ Q×2.
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subrepresentation, we would know Π is either cuspidal or an isobaric sum of a self-dual cuspidal automorphic
representation and a quadratic Dirichlet character. Note that we cannot guarantee that Π is cuspidal, because
there exist no irreducible self-dual local Galois representations of odd dimension greater than one (when p
is odd); see [Pra99, Proposition 4]. Condition (1) and (3) would follow if we can control the Archimedean
place of σ1 and can choose φp with desired good properties.

To achieve these requirements, we prove a Burger–Sarnak type principle for Fourier–Jacobi periods on
the pair (Sp2r, S̃p2r), in the spirit of [BS91,HL98,Pra07,Zha14]. More precisely, suppose

(1) σ1,p is a supercuspidal representation of Sp2r(Qp) that is induced from a compact open subgroup such
that the pair (σ̃0,p, σ1,p) satisfies the Fourier–Jacobi case of the local Gan–Gross–Prasad restriction
problem:

(1.2) HomSp2r(Qp)(σ̃0,p ⊗ ωψp
⊗ σ1,p,C) 6= 0,

where ωψp
is the local Weil representation associated to ψp.

(2) The contragredient of σ1,∞ is a holomorphic discrete series of Sp2r(R) with scalar lowest K-type of
weight (r + 1, . . . , r + 1).

We show that there exists a cuspidal automorphic representation σ1 of Sp2r which globalizes σ1,p and
σ1,∞ simultaneously, such that the Fourier–Jacobi period integral on the pair (σ1, σ0) is nonzero. The
local restriction condition (1.2) then follows from the (now established) local Gan–Gross–Prasad conjecture,
Prasad’s conjecture, and a local seesaw identity; see §4.

The local Galois representation φp used to enforce the pre-admissibility condition at some place λ above
` will be constructed in Appendix A. Let ι` : C ∼−→ Q` be a fixed isomorphism which induces a place λ of E.
We require φp to satisfy:

(1) φp is self-dual of orthogonal type;
(2) φp is residually absolutely irreducible;
(3) there exists an arithmetic Frobenius lift Frobp ∈ Gal(Qp/Qp) such that the eigenvalues {α1, . . . , α2r}

of ι`ρ(Frobp) are `-adic units and their reductions in F` avoid a prescribed finite subset of F`;
moreover, α2

i 6= p2α2
j in F` for any 1 ≤ i 6= j ≤ 2r.

The explicit construction is more complicated than we expected. Indeed, in the conjugate self-dual variant,
we need to split and distribute the analogous requirements between two distinct finite places.

We now turn to the conjugate self-dual setting and discuss the proof of Theorem D, which is another
main theorem. Following the bipartite Euler system arguments via level-raising congruences, pioneered by
Bertolini and Darmon for Shimura curves [BD05], we bound the Bloch–Kato Selmer group by constructing
global Galois cohomology classes that are deeply ramified at prescribed primes. These classes originate from
the cohomology of products of unitary Shimura varieties attached to (standard indefinite) unitary groups
Un0 and Un1 via level-raising congruences, and are realized as the image of the diagonal cycle under the
Hecke-localized Abel–Jacobi map. Their ramifications are detected by relating them to unitary Gan–Gross–
Prasad periods on definite Shimura sets through the basic uniformization of the special fibers of the integral
models—this is the so-called first explicit reciprocity law.

Our argument follows [LTX+22] but requires modifications for the almost cuspidal setting. The results
of [LTX+22] do not apply verbatim, since several of their standing hypotheses are tailored to the cuspidal
case. For example, the computation of the Hecke–Galois module of the Shimura varieties is more delicate:
when π is a cuspidal representation of Un1 with base change BC(π) ∼= Π1 = Π[

1 ⊞ 1, then the π∞-isotypic
part of the middle-degree (projective limit) cohomology of the Shimura variety

Hn1−1
ét

(
Sh(Un1)F ,Q`

(
n1 − 1

2

))
[ι`π∞]

is a Q`[Gal(F/F )]-module isomorphic to either the trivial character or the Galois representation ρc
Π[

1,λ
(r),

determined by Arthur’s multiplicity formula. Here ι` : C ∼−→ Q` is a fixed isomorphism inducing a place λ
of E. More subtly, our construction of Π1 via the Burger–Sarnak type principle fixes its local components
of finitely many places, but does not a priori control ramifications at the remaining places. To compensate,
we replace the notion of admissibility of [LTX+22] with a weaker variant adapted to the analytic rank-zero
situation.
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As in [LTX+22], the geometric input has two parts: (i) the study of Tate cycles in the special fiber
of the semistable integral model of Shimura varieties attached to Un1 ; and (ii) an arithmetic level-raising
property for Shimura varieties attached to Un0 . In our application, non-cuspidality is allowed only on the
odd-unitary side, while the even-unitary representation remains cuspidal. Moreover, the Tate cycle argument
works provided the Satake parameter at the given unramified place is “generic” enough.

Finally, under the hypotheses of Theorem D, we are not able to prove the vanishing of the larger Bloch–
Kato Selmer group

H1
f (F, ρΠ0,λ ⊗ ρΠ1,λ(n)),

although this is predicted by the Beilinson–Bloch–Kato conjecture. This limitation is intrinsic to our sim-
plifying conditions when applying the bipartite Euler system method: Let R[ be a self-dual lattice in
ρΠ0,λ ⊗ ρΠ[

1,λ
(n). For any very good inert place p of F+ at which both arithmetic level-raising and the

Tate cycle conditions apply, we cannot show deep ramification of the Hecke-localized Abel–Jacobi image of
the diagonal cycle in the singular part of the local Galois cohomology

H1
sing(Fp,R[/λm),

for any m ≥ 1. Indeed, under further conditions we impose, these cohomology spaces vanish; see §3.9. We
do not know how to circumvent this limitation.

Let us briefly summarize this article. In §2, we recall certain background materials related to automorphic
representations and Galois representations. In §3, we consider the conjugate self-dual Rankin–Selberg case.
In §§3.1–3.4, we collect certain background results from [LTX+22] and extend them to the almost cuspidal
situation. In §§3.5–3.7, we compute the local part of the Abel–Jacobi image of the diagonal cycle. In §3.8, we
define the notion of admissible places in the almost cuspidal situation, and check in good situations that all
but finitely many finite places are admissible. In §3.9, we prove Theorem D. In §4, we collect the necessary
background results related to theta correspondence that will be used in §5. Finally, in §5, we apply the
Burger–Sarnak type principle and seesaw relation to prove the main theorems: Theorems A, B and C are
proved in §5.1, and Theorem G is proved in §5.2. In Appendix A, we construct certain (conjugate) self-dual
local Galois representations with good properties, which will be used in the Burger–Sarnak type principle
for Fourier–Jacobi periods.

1.4. Notation and conventions. In this subsection, we set up some common notations and conventions
for the entire article, including the appendix.

Notation 1.4.1 (Generalities).
• Let N = {0, 1, 2, 3, ...} be the monoid of nonnegative integers and set Z+ = N∖ {0}. We write Z, Q,
R, and C for the integers, rational numbers, real numbers, and complex numbers, respectively.

• We take square roots only of positive real numbers and always choose the positive root.
• For any set S, we denote by 1S the characteristic function of S, and by idS : S → S the identity

map. We write id for idS if S is clear from context. Let #S be the cardinality of S.
• For any set X, let 1 ∈ X denote the distinguished trivial element (this notation is only used when

the notion of triviality is clear from context).
• The eigenvalues or generalized eigenvalues of a matrix over a field k are counted with multiplicity,

i.e., by the dimension of the corresponding eigenspace or generalized eigenspace.
• For each rational prime p, we fix an algebraic closure Qp of Qp with residue field Fp. For every

integer r ∈ Z+, we denote by Qpr the unique unramified extension of Qp of degree r inside Qp, and
by Fpr its residue field.

• We use standard notations from category theory. The category of sets is denoted by Set. The
category of schemes is denoted by Sch.

• All rings are commutative and unital, and ring homomorphisms preserve units.
• If a base ring is not specified in the tensor operation ⊗, then it is Z.
• For a ring L and a set S, denote by L[S] the L-module of L-valued functions on S of finite support.
• For each square matrix M over a ring, we write M> for its transpose.
• Suppose Γ̃, G are groups, Γ ⊂ Γ̃ is a subgroup, and L is a ring.
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– We denote by Γab the maximal abelian quotient of Γ;
– For a homomorphism ρ : Γ → GLr(L) for some r ∈ Z+, we denote by ρ∨ : Γ → GLr(L) the

contragredient homomorphism, which is defined by the formula ρ∨(x) = (ρ(x)>)−1.
– For a group homomorphism ρ : Γ→ G and an element γ ∈ Γ̃ that normalizes Γ, let ργ : Γ→ G

denote the homomorphism defined by ργ(x) = ρ(γxγ−1).
– We say that two homomorphisms ρ1, ρ2 : Γ→ G are conjugate if there exists an element g ∈ G

such that ρ1 = g ◦ ρ2 ◦ g−1.
• For any positive integer n ∈ Z+, let µn denote the finite diagonalizable group scheme over Z of n-th

roots of unity.
• Denote by c ∈ Gal(C/R) the complex conjugation.
• For each field k, we denote by char k the characteristic of k.
• If G is a real Lie group or a totally disconnected locally compact group and π is an irreducible

admissible representation of G, we denote by π∨ the contragredient of π. We do not use π̃ for the
contragredient of π.

Notation 1.4.2 (Number fields). A subfield of C is called a number field if it is a finite extension of Q.
Suppose F is a number field.

• We denote byOF the ring of integers of F . We will not distinguish between prime ideals ofOF and the
corresponding finite places of F ; we denote by Σfin

F the set of finite places of F , by Σ∞
F = Hom(F,C)

the set of infinite places (also called Archimedean places) of F , and by ΣF = Σfin
F ∪ Σ∞

F the set of
all places of F .

• For each finite set Σ of finite places of F , we write

AF,Σ :=
∏

v∈Σ
Fv, AΣ

F :=
∏′

v∈ΣF rΣ
Fv, AF := A∞

F × (F ⊗Q R)

If F = Q, we omit Q from the notation.
• Let F denote the Galois closure of F in C, and set GalF = Gal(F/F ).
• For each rational prime `, let ε` : GalF → Z×

` denote the `-adic cyclotomic character. If v is a finite
place of F , we continue to write ε` for its restriction to GalFv .

• We fix the following conventions. For each finite place v ∈ Σfin
F :

– write Ov and Fv for the completion of OF (resp. F ) at v;
– let κv denote the residue field, ‖v‖ := #κv, and write charκv for the residue characteristic.
– we fix an algebraic closure Fv of Fv and an embedding ιv : F ↪→ Fv extending F ↪→ Fv; via ιv

we regard GalFv
:= Gal(Fv/Fv) as a decomposition subgroup of GalF ;

– for any map r : GalF → X, we write rv := r|GalFv
;

– let Iv ⊂ GalFv denote the inertia subgroup;
– fix an algebraic closure κv of κv, and identify Galκv

:= Gal(κv/κv) with GalFv /Iv,
– fix φv ∈ GalFv

lifting the arithmetic Frobenius in Galκv
, and

– let WFv
denote the Weil group, and denote by Artv : F×

v →W ab
Fv

the local reciprocity map (also
called the Artin map), normalized so that uniformizers are sent to geometric Frobenius classes.

– for every automorphism τ ∈ Aut(F ), denote by vτ the place defined by vτ (x) := v(τ−1x) for
every x ∈ F .

• For each finite set S of rational primes, set ΣF (S) := {v ∈ Σfin
F : charκv ∈ S}. If S = {p} is a

singleton, we write simply ΣF (p) := ΣF ({p}) = {v ∈ Σfin
F : v|p}.

• Two subsets Σ1,Σ2 of finite places of F are called strongly disjoint if {charκv : v ∈ Σ1} is disjoint
from {charκv : v ∈ Σ2}.

Notation 1.4.3 (Automorphic representations). Suppose F is a number field. Let G be either the meta-
plectic double cover S̃p2n of a symplectic group Sp2n over F or an algebraic group over F whose central
connected component is a connected reductive group.

• If G is a metaplectic group S̃p2n, then an automorphic form f on G(AF ) is called genuine if the
nontrivial element in ker

(
S̃p2n(AF ) → Sp2n(AF )

)
acts by −1 on f . For simplicity, if G is not

9



metaplectic, then every automorphic form on G(AF ) is called genuine. We denote by A0(G(AF ))
the space of genuine cusp forms on G(AF ).

• Suppose π is an automorphic representation of G(AF ).
– We write πv for its local component at v, for every place v of F .
– We denote by π∨ the contragredient of π.
– For any automorphism τ ∈ Aut(F ), we denote by πτ the automorphic representation of G(AF )

satisfying πτv ∼= πvτ for every place v of F .
– For any cuspidal genuine automorphic representation π ⊂ A0(G(AF )), we write π for its con-

jugation.

1.5. Acknowledgments. I wish to thank Rui Chen and Jialiang Zou for many valuable discussions on the
theta correspondence. I am grateful to Yifeng Liu for sharing an earlier draft of [LTX+25]. I also thank
Weixiao Lu, Hang Xue, and Murilo C. Zanarella for helpful conversations, and Daniel Disegni, Zhiyu Zhang
for comments on an earlier draft. Finally, I am deeply indebted to my Ph.D. advisor, Wei Zhang, for his
invaluable guidance and encouragement.

2. Automorphic representations and Galois representations

In this section, we introduce the automorphic representations relevant to us and their associated Galois
representations.

2.1. The conjugate self-dual case. In this subsection, we fix a positive integer N ∈ Z+, an imaginary
quadratic extension F of a totally real number field F+, and a relevant representation Π of GLN (AF )
(see Definition 1.1.3).

If V is a Hermitian space of dimension N over F and π is a discrete automorphic representation of
U(V)(AF+), let BC(π) denote the automorphic base change of π as defined in [LTX+22, Definition 3.2.3]
(see also Definition 4.4.2), which always exists by [CZ24, Theorem 2.1].

Proposition 2.1.1.
(1) For every finite place w of F , Πw is tempered.
(2) Suppose Π is cuspidal. For every rational prime ` and every isomorphism ι` : C ∼−→ Q`, there exists

a semisimple continuous homomorphism
ρΠ,ι` : GalF → GLN (Q`),

unique up to conjugation, satisfying that

WD`

(
ρΠ,ι` |GalFw

)F-ss ∼= ι` recN
(

Πw ⊗ |det|
1−N

2
)
,

for every finite place w of F , where recN is the local Langlands correspondence for GLN (Fw). More-
over, ρc

Π,ι` and ρ∨
Π,ι`(1−N) are conjugate.

(3) Suppose N is odd and Π = Π[ ⊞ χ is almost cuspidal. For every rational prime ` and every isomor-
phism ι` : C ∼−→ Q`, there exist semisimple continuous homomorphisms

ρΠ[,ι` : GalF → GLN−1(Q`), ρχ,ι` : GalF → GL1(Q`),
unique up to conjugation, satisfying that

WD`

(
ρΠ[,ι` |GalFw

)F-ss ∼= ι` recN
(

Π[
w ⊗ |det|

1−N
2

)
and

WD`

(
ρχ,ι` |GalFw

)F-ss = ι`

(
χw ⊗ |det|

1−N
2

)
◦Art−1

w ,

for every finite place w of F , where recN−1 is the local Langlands correspondence for GLN−1(Fw).
Moreover, ρΠ[,ι` and ρ∨

Π[,ι`
(1−N) are conjugate. Let ρΠ denote the direct sum Galois representation

ρΠ[,ι` ⊞ ρχ,ι` .

Proof. These follow from standard results, see for example [CH13, Theorem 3.2.3], [Car12, Theorem 1.1]
and [Car14, Theorem 1.1] □

Remark 2.1.2. If χ is trivial, then ρχ,ι` equals ε(1−N)/2
` .
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Lemma 2.1.3. Let ` be a rational prime with a fixed isomorphism ι` : C ∼−→ Q`. If N is odd, then ρΠ,ι`(N−1
2 )

is pure of weight 0 at every finite place w of F . If N is even, then ρΠ,ι`(N2 ) is pure of weight −1 at every
finite place w of F .

Proof. It suffices to show that ρΠ,ι`(N−1
2 ) (resp. ρΠ,ι`(N2 )) is pure of some weight when N is odd (resp.

even). By [TY07, Lemma 1.4(3)] and Proposition 2.1.1, this follows from the fact that Πw is tempered for
any finite place w of F . □

2.2. The self-dual case. In this subsection, we fix a positive integer r and a totally real number field F .
Let Σbad denote the (finite) set of finite places of F whose underlying rational prime ramifies in F .

Definition 2.2.1. An isobaric automorphic representation Π of GL2r+1(AF ) is called a (self-dual) relevant
automorphic representation if

(1) Π is self-dual in the sense that its contragredient Π∨ is isomorphic to Π;
(2) Π has nontrivial central character χ(−1)r+1d, where χ(−1)r+1d is the quadratic character of AF at-

tached to a quadratic extension F (
√

(−1)r+1d) of F , where d is a totally positive element in F×;
(3) Π∞ has infinitesimal character (r − 1, r − 2, . . . , 1− r); and
(4) Π is either cuspidal or an isobaric sum of a cuspidal automorphic representation of GL2r(AF ) and

a nontrivial quadratic character of F×\A×
F .

We fix a relevant representation Π of GL2r+1(AF ), and denote by ΣΠ the smallest (finite) set of finite
places of F containing Σbad such that Πv is unramified for every finite place v of F not in ΣΠ.

Proposition 2.2.2.
(1) For every finite place v of F , Πv is tempered.
(2) For every rational prime ` and every isomorphism ι` : C ∼−→ Q`, there exists a semisimple continuous

homomorphism
ρΠ,ι` : GalF → GL2r+1(Q`),

unique up to conjugation, satisfying that

WD`

(
ρΠ,ι` |GalFw

)F-ss ∼= ι` rec2r+1

(
Πw ⊗ |det|−r

)
,

for every finite place v of F , where rec2r+1 is the local Langlands correspondence for GL2r+1(Fv).
Moreover, ρΠ,ι` and ρ∨

Π,ι`(−2r) are conjugate.

Proof. These follow from standard results, see for example [CH13, Theorem 3.2.3], [Car12, Theorem 1.1]
and [Car14, Theorem 1.1] □

Definition 2.2.3. For each finite place w of F not lying above ΣΠ
+, let α(Πw) denote the Satake parameter

of Πw, and let Q(Πw) denote the subfield of C generated by the coefficients of the polynomial∏
α∈α(Πw)

(T − α) ∈ C[T ].

We define the coefficient field (also called the Hecke field) of Π to be the compositum of the fields Q(Πw)
for all finite places w of F not lying above ΣΠ

+, denoted by Q(Π).

Definition 2.2.4. We say a number field E ⊂ C is a strong coefficient field of Π if E contains Q(Π), and
for every finite place λ of E with underlying prime `, there exists a continuous homomorphism

ρΠ,λ : GalF → GL2r+1(Eλ)

necessarily unique up to conjugation, such that for every isomorphism ι` : C ∼−→ Q` inducing the place λ,
ρΠ,λ ⊗Eλ

Q` and ρΠ,ι` (see Proposition 2.2.2) are conjugate.

Remark 2.2.5. By the argument of [CH13, Proposition 3.2.5], a strong coefficient field of Π exists.
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2.3. Galois theoretic arguments. Let F+ be a subfield of R and F be a quadratic extension of F+
contained in C that is not contained in R. We fix an odd rational prime ` that is unramified in F , and
consider a finite extension Eλ/Q`, with ring of integers Oλ and the maximal ideal λ of Oλ. We freely use
the notation of [LTX+22, §2]. For example,

• If Γ is a topological group and L is a Z`-ring that is finite over either Z` or Q`, then an L[Γ]-module
M is called weakly semisimple if M is an object of Mod(Γ, L), and the natural map MΓ →MΓ is an
isomorphism.

• For each positive integerN ∈ Z+, we define the group scheme GN := (GLN×GL1)⋊{1, c} with c2 = 1
and c(g, µ)c = (µg−>, µ) for (g, µ) ∈ GLN × GL1. Denote by ν : GN → GL1 the homomorphism
such that ν|GLN ×GL1 is the projection to the GL1 factor and ν(c) = −1.

• For an Oλ-module M and an element x ∈M , the exponent of x is defined to be

expλ(x,M) := min{d ∈ N ∪ {∞}|λdx = 0}.

• For a finite place w of F over ` and an object R in Mod(Fw,Oλ) that is crystalline with Hodge–Tate
weights in [a, b] where b and −a are nonnegative integers and b − a ≤ ` − 2, let H1

ns(Fw,R) denote
the Oλ-submodule of H1(Fw,R) consisting of elements s represented by an extension

0→ R0 → Rs → Z` → 0

in the category Mod(Fw,Z`) such that Rs is crystalline. Here R0 is the underlying Z`[GalFw
]-module

of R.
• For a finite place w of F not over ` and an object R in Mod(Fw,Oλ), we set H1

sing(Fw,R) :=
H1(IFw ,R)Galκw , and denote by H1

ns(Fw,R) the kernel of the canonical map

∂w : H1(Fw,R)→ H1
sing(Fw,R).

H1
ns(Fw,R) is canonically isomorphic to H1(κw,RIFw ).

We recall the following definition of Bloch–Kato Selmer groups from [BK90].

Definition 2.3.1. For an object R ∈ Mod(F,Eλ), the Bloch–Kato Selmer group H1
f (F,R) attached to R is

defined to be

H1
f (F,R) := ker

(
H1(F,R)→

∏
w∈Σfin

F
rΣF (p)

H1
sing(Fw,R)×

∏
w∈ΣF (p)

H1(Fw,R ⊗Q`
Bcrys)

)

Definition 2.3.2. For an object R ∈ Mod(F,OL)fr, the (integral) Bloch–Kato Selmer group H1
f (F,R)

attached to R is defined to be the inverse image of H1
f (F,R ⊗Q) under the natural map

H1(F,R)→ H1(F,R ⊗Q).

Moreover, for each m ∈ Z+ ∪ {∞}, the (mod-λm) Bloch–Kato Selmer group H1
f,R(F,R(m)) is defined to be

the image of H1
f (F,R) under the natural map H1(F,R)→ H1(F,R(m)).

To end this subsection, we study two “general image” conditions for integral Galois modules.

Lemma 2.3.3. Let F ′/F+ be a totally real finite Galois extension contained in R and a polynomial P(T ) ∈
Z[T ]. For each α ∈ {0, 1}, we take an object Rα ∈ Mod(F,Oλ)fr with the associated homomorphism ρα :
GalF → GL(Rα), together with a (1−α)-polarization Ξ : Rc

α
∼−→ R∨

α(1−α). We assume that rank R0 = n0 =
2r0 is even and rank R1 = n1 = 2r1 + 1 is odd. Set R = R0 ⊗ R1 and Ξ : R ∼−→ R∨(1). For every positive
integer m ∈ Z+, consider the following statement
(GImR0,R1,F ′,P): The image of the restriction of the homomorphism(

ρ
(m)
R0,+, ρ

(m)
R1,+, ε

(m)
`

)
: GalF → Gn0(Oλ/λm)× Gn1(Oλ/λm)× (Oλ/λm)×

(see [LTX+22, Notation 2.6.1]) to GalF ′ contains the element (γ0, γ1, ξ) satisfying
(a) P(ξ) is invertible in Oλ/λm;
(b) for each α ∈ {0, 1}, γα belongs to GLnα

(Oλ/λm)× (Oλ/λm)× × {c} with order coprime to `;
12



(c) the kernels of (hγ0 − 1)n0 , (hγ1 − 1)n1 and (hγ0 ⊗ hγ1 − 1) (see [LTX+22, Notation 2.6.2]) are
all free over Oλ/λm of rank 1;

(d) for each α ∈ {0, 1}, hγα does not have an eigenvalue that is equal to −ξ in κλ.
Then (GI1

R0,R1,F ′,P) implies (GImR0,R1,F ′,P) for every m ∈ Z+.
Proof. This is [LTX+22, Lemma 2.7.1]. □
Lemma 2.3.4. Let F ′/F+ be a totally real finite Galois extension contained in R and a polynomial P(T ) ∈
Z[T ]. We take object R ∈ Mod(F,Oλ)fr with the associated homomorphism ρ : GalF → GL(R), together with
a 1-polarization Ξ : Rc ∼−→ R∨(1). We assume that rank R = 2r. For every positive integer m ∈ Z+, consider
the following statement
(GImR,F ′,P): The image of the restriction of the homomorphism(

ρ
(m)
R,+, ε

(m)
`

)
: GalF → G2r(Oλ/λm)× (Oλ/λm)×

(see [LTX+22, Notation 2.6.1]) to GalF ′ contains the element (γ, ξ) satisfying
(a) P(ξ) is invertible in Oλ/λm;
(b) γ belongs to GL2r(Oλ/λm)× (Oλ/λm)× × {c} with order coprime to `;
(c) the kernels of (hγ − 1)2r (see [LTX+22, Notation 2.6.2]) is all free over Oλ/λm of rank 1;
(d) hγ does not have an eigenvalue that is equal to −ξ in κλ.

Then (GI1
R,F ′,P) implies (GImR,F ′,P) for every m ∈ Z+.

Proof. The argument of [LTX+22, Lemma 2.7.1] goes through. □

3. The conjugate self-dual Rankin–Selberg case

In this section, we adapt the argument of [LTX+22] to prove Theorem D. While our setup is not identical
to that of [LTX+22], we align our notation with theirs whenever possible and record any deviations as they
arise. Fix a positive integer N ≥ 2 and set r = bN2 c. We work in the following setting.
Setup 3.0.1.

• Let F+ ⊂ R be a totally real number field and let F ⊂ C be a quadratic CM extension of F+.
• Denote by Σ∞ (resp. Σ∞

+ ) the set of Archimedean places of F (resp. F+), with τ∞ (resp. τ∞) the
default one induced by the inclusion F ⊂ C (resp. F+ ⊂ R).

• Let Σbad
+ denote the (finite) set of finite places of F+ whose underlying rational prime ramifies in F .

• For any place v of F+, we set OFv
:= Ov ⊗OF+

OF and Fv := F ⊗F+ Fv.
• For every place w of F with underlying place v of F+, we identify GalFw with GalF+,v ∩GalF (resp.

c(GalF+,v
∩GalF )c), if the embedding ιv : F → F+,v induces (resp. does not induce) the place w.

3.1. Unitary Satake parameters and unitary Hecke algebras. We recall the notation of the coeffi-
cient field for an automorphic representation of GLN (AF ). Let Π be an irreducible relevant automorphic
representation of GLN (AF ) that is cuspidal (resp. almost cuspidal) when N is even (resp. N is odd).
Definition 3.1.1. We denote by ΣΠ

+ the smallest finite set of (finite) places of F+ containing Σbad
+ so that

Πw is unramified for every finite place w of F not lying above ΣΠ
+.

Definition 3.1.2. For each ring L, we define an abstract Satake parameter in L of rank N to be a multi-set
α consisting of N elements in L. For two Satake parameters α,α′ in L of dimension n and n′, respectively,
we can form their tensor product α ⊗ α′ in the natural way, which is an abstract Satake parameter of
dimension nn′.
Definition 3.1.3.

• For each finite place w of F not lying above ΣΠ
+, let α(Πw) denote the Satake parameter of Πw,

which is an abstract Satake parameter in C of dimension N (see Definition 3.1.2), and let Q(Πw)
denote the subfield of C generated by the coefficients of the polynomial∏

α∈α(Πw)

(
T − α

√
‖w‖

N−1
)
∈ C[T ].
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• We define the coefficient field of Π to be the compositum of the fields Q(Πw) for all finite places w
of F not lying above ΣΠ

+, denoted by Q(Π),
• For each finite place v of F+ not in ΣΠ

+ and inert in F , the abstract Satake parameter α(Πv) at
v of rank N is defined in [LTX+22, Notation 3.14], which is an abstract Satake parameter in C of
dimension N .

Definition 3.1.4. Let v be a finite place of F+ inert in F , L be a ring, and P ∈ L[T ] be a monic polynomial.
• When N is odd, we say P is Tate generic at v if P ′(1) is invertible in L.
• When N is odd, we say P is intertwining generic at v if P (−‖v‖) is invertible in L.
• When N is even, we say P is level-raising special at v if P (‖v‖) = 0 and P ′(‖v‖) is invertible in L.
• When N is even, we say P is intertwining generic at v if P (−1) is invertible in L.

Lemma 3.1.5. The coefficient field Q(Π) is a number field.

Proof. We take a standard pair (V, π) (in the sense of Definition 3.2.1) such that BC(π) is isomorphic to Π
and πv is unramified for each finite place v of F+ not in ΣΠ

+. Such a standard pair always exists by Arthur’s
multiplicity formula [KMSW14, Theorem 1.7.1]. For each finite place v of F+, we denote by Q(πv) the fixed
field of the group

{τ ∈ Aut(C) : πv ⊗C,τ C ∼= πv}.
If v is not contained in ΣΠ

+, then Q(BC(πv)) equals Q(πv) by [ST14, Lemma 2.25 and Lemma 4.5]. Moreover,
the composite field of Q(πv) for all finite places v not in ΣΠ

+ is a number field by [ST14, Proposition 2.15].
Thus the assertion follows. □
Definition 3.1.6. We say a number field E ⊂ C is a strong coefficient field of Π if E contains Q(Π), and
for every finite place λ of E with underlying prime `, there exists a continuous homomorphism

ρΠ,λ : GalF → GLN (Eλ)

necessarily unique up to conjugation, such that for every isomorphism ι` : C ∼−→ Q` inducing the place λ,
ρΠ,λ ⊗Eλ

Q` and ρΠ,ι` (see Proposition 2.1.1) are conjugate.

Remark 3.1.7. By the argument of [CH13, Proposition 3.2.5], a strong coefficient field of Π exists. Moreover,
if N is odd and Π is almost cuspidal of the form Π = Π[ ⊞ 1 where 1 is the trivial character of GL1(AF ),
then for every strong coefficient E with a finite place λ, the homomorphism ρΠ,λ is of the form

ρΠ,λ = ρΠ[,λ ⊕ ε
(1−N)/2
` .

Definition 3.1.8. For any OF+ -ring R, a Hermitian space over OF ⊗OF+
R of dimension N is a projective

OF ⊗OF+
R-module V of rank N together with a perfect pairing

(−,−)V : V × V → OF ⊗OF+
R

that is OF ⊗OF+
R-linear in the first variable and (OF ⊗OF+

R, c ⊗ id)-linear in the second variable, and
satisfies (x, y)V = (y, x)c

V for any x, y ∈ V . We write U(V ) for the group of R-linear isometries of V , which
is a reductive group scheme over R.

We denote by V] := V ⊕ Re the orthogonal direct sum Hermitian space where we set ‖e‖ = 1. If
f : V → V ′ is an isometry of Hermitian spaces over R, we write f] : V] → V ′

] for the induced isometry of
Hermitian spaces over OF ⊗OF+

R.

Definition 3.1.9.
(1) For a finite place v of F+ not in Σ+, let ΛN,v denote the unique up to isomorphism Hermitian space

over OFv
of dimension N , and UN,v its unitary group over OF+,v

. We define spherical Hecke algebra
TN,v := Z[UN,v(Ov)\UN,v(F+,v)/UN,v(Ov)].

(2) For a finite set Σ+ of finite places of F+ containing Σbad
+ , we define the abstract unitary Hecke

algebra away from Σ+ to be the restricted tensor product ring

TΣ+
N :=

⊗
v

′TN,v

over all finite places of F+ not in Σ+, with respect to the unit elements.
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(3) The Hecke character φΠ : TΣΠ
+

N → C attached to Π is defined in [LTX+22, Construction 3.1.10]. By
[BG14, Lemma 2.2.3], φΠ takes value in Q(Π). Furthermore, φΠ takes values in OQ(Π). In fact, if
we take a standard pair (V, π) (in the sense of Definition 3.2.1) such that BC(π) is isomorphic to
Π and πv is unramified for each finite place v of F+ not in ΣΠ

+. Such a standard pair always exists
by Arthur’s multiplicity formula [KMSW14, Theorem 1.7.1]. Then φΠ is identical to the spherical
Hecke character of π, which is easily seen to be valued in algebraic integers.

3.2. Unitary Shimura varieties. Let V be a Hermitian space over F of dimension N .

Definition 3.2.1.
(1) Recall from [LTX+22, Definition 3.1.11] that, for any finite set Σ+ of finite places of F+ we have

(a) a category K(V)Σ+ whose objects are neat compact open subgroups of U(V)(A∞,Σ
F+

) and whose
morphisms are double cosets. There is also a subcategory K(V)Σ+ of K(V)Σ+ consisting of the
same objects but allowing only identity double cosets; and

(b) a category K(V)Σ+
sp consisting of pairs (K[,K]), where K[ (resp. K]) is an object of K(V)Σ+

(resp. K(V])Σ+) such that K[ is contained in K]. There are the obvious functors

(−)[ : K(V)Σ+
sp → K(V)Σ+ , (−)] : K(V)Σ+

sp → K(V])Σ+ .

When Σ+ is the empty set, we suppress it from all the notations above.
(2) We say V is standard definite if it has signature (N, 0) at each real place of F+. We say V is standard

indefinite if it has signature (N − 1, 1) at τ∞ and (N, 0) at other real places of F+.
(3) For a discrete automorphic representation π of U(V)(AF+), we say (V, π) is a standard pair if one

of the following holds:
(a) V is standard definite, and π∞ appears in

lim
K∈K′(V)

C[Sh(V,K)].

(b) V is standard indefinite, and π∞ appears in
lim

K∈K′(V)
ι−1
` Hi

ét(Sh(V,K)F ,Q`),

for some rational prime ` with isomorphism ι` : C ∼−→ Q` and some i ∈ N.

Proposition 3.2.2. Let π be a discrete automorphic representation of U(V)(AF+) such that (V, π) is a
standard pair. For every rational prime ` and every isomorphism ι` : C ∼−→ Q`, there exists a semisimple
continuous homomorphism

ρBC(π),ι` : GalF → GLN (Q`),
unique up to conjugation, satisfying that

(3.1) WD`

(
ρBC(π),ι` |GalFw

)F-ss ∼= ι` recN
(

BC(π)w ⊗ |det|
1−N

2
)
,

for every finite place w of F , where recN is the local Langlands correspondence for GLN (Fw). Moreover,
ρc

Π,ι` and ρ∨
Π,ι`(1−N) are conjugate.

Proof. This follows from Arthur’s multiplicity formula [CZ24, Theorem 2.6] and standard results, see for
example [CH13, Theorem 3.2.3], [Car12, Theorem 1.1] and [Car12, Theorem 1.1]. □

When V is standard definite (resp. standard indefinite), there are functors Sh(V,−) : K(V) → Set
(resp. Sh(V,−) : K(V)→ Sch/F ) of Shimura sets (Shimura varieties) attached to ResF+/QU(V), as defined
in [LTX+22, §3.2].

Hypothesis 3.2.3. Suppose V is a standard indefinite Hermitian space over F of dimension N , and π
is a discrete automorphic representation of U(V)(AF+) such that the functorial lift BC(π) is a relevant
automorphic representation of GLN (AF ) (see Definition 4.4.2). For every isomorphism ι` : C ∼−→ Q`, we
consider the Q`[GalF ]-module

WN−1(π∞) := HomQ`[U(V)(A∞
F+

)]

(
ι`π

∞, lim−→
K′(V)

HN−1
ét

(
Sh(V,K)F ,Q`

) )
.
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(1) If ρBC(π),ι` is irreducible, then WN−1(π∞) is isomorphic to ρc
BC(π),ι` .

(2) If N is odd, BC(π) = Π[ ⊞ χ is almost cuspidal, and ρΠ[,ι` is irreducible, then WN−1(π∞) is
isomorphic to either ρc

Π[,ι`
or ρc

χ,ι`
. Moreover, if there is a finite place w of F over a place of F+ inert in

F such that Π[
w is square-integrable, then there exists a unique irreducible admissible representation

π∞
1 of U(V)(A∞

F ) such that π∞
1 is isomorphic to π∞ away from w, and WN−1(π∞) ⊕WN−1(π∞

1 )
is conjugate to ρc

Π,ι` as GalF -representations.

Proposition 3.2.4. Hypothesis 3.2.3 holds if N ≤ 3 or F+ 6= Q.

Proof. The case for N = 2 is established by Liu [Liu21, Theorem D.6]. The case for N = 3 and F+ = Q
follows from the main result of [Rog92]. The case for N ≥ 3 when F+ 6= Q will be established in a sequel
to [KSZ21], assuming the full endoscopic classification for unitary groups. Note that the full endoscopic
classification for such unitary groups is established by Chen-Zou [CZ24, Corollary 7.6]. □

We recall the following definition of cohomological Hecke characters from [LTX+22].

Definition 3.2.5. Let N ∈ Z+ be a positive integer, and Σ+ a finite set of finite places of F+ containing
Σbad

+ . Consider a homomorphism φ : TΣ+
N → κ with κ a field. We say φ is cohomologically generic if

Hi
ét(Sh(V,K)F , κ)

T
Σ′

+
N

∩kerφ
= 0

holds for any tuple (Σ′
+, i,V,K) in which

• Σ′
+ is a finite set of finite places of F+ containing Σ+,

• i is a nonnegative integer distinct from N − 1,
• V is a standard indefinite Hermitian space over F of dimension N , and
• K is an object of K(V) of the form K = KΣ′

+
×

∏
v∈Σfin

F+
rΣ′

+
U(Λ)(Ov) for some self-dual∏

v∈Σfin
F+

rΣ′
+
OFv -lattice Λ in V⊗F+ A

Σfin
F+

rΣ′
+

F+
.

3.3. Generalized CM type and reflexive closure. We denote by N[Σ∞
F ] the commutative monoid freely

generated by the set Σ∞
F , which admits an action of Aut(C) via the set Σ∞

F .

Definition 3.3.1. A generalized CM type of rank N is an element

Ψ =
∑
τ∈Σ∞

rττ ∈ N[Σ∞
F ]

satisfying rτ + rτ c = N for every τ ∈ Σ∞
F . For such Ψ, we define its reflex field FΨ ⊂ C to be the fixed

subfield of the stabilizer of Ψ in Aut(C). A CM type is simply a generalized CM type of rank 1.

Definition 3.3.2. We define the reflexive closure of F , denoted by Frflx, to be the subfield of C generated
by F and the intersections of FΦ for all CM types Φ of F . Set Frflx,+ := (Frflx)c=1.

Definition 3.3.3. We say a finite place p of F+ is good inert if it is inert in F and splits completely in
Frflx,+. By abuse of notation, we also denote by p the induced finite place of F . We say a good inert place
p is very good inert if the following are satisfied:

(1) the underlying rational prime p of p is odd and unramified in F ;
(2) p is of degree one over Q, that is, F+,p = Qp.

Remark 3.3.4. A finite place p of F+ is very good inert in our sense if it is very special inert in the sense of
[LTX+22, Definition 3.3.4].

3.4. Preparation for Tate classes and arithmetic level-raising. We now work in the following setting.

Setup 3.4.1.
• Let Π be a relevant representation of GLN (AF ) that is cuspidal (resp. almost cuspidal of the form

Π = Π[ ⊞ 1) if N is even (resp. odd). Here 1 is the trivial character of GL1(AF ).
• Let E ⊂ C be a strong coefficient field of Π (see Definition 3.1.6).
• Let Σmin

+ be a finite set of finite places of F+ that contains ΣΠ
+ (see Definition 3.1.1).
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• Let λ be a finite place of E whose underlying prime ` satisfies Σmin
+ ∩ ΣF+(`) = ∅. We fix an

isomorphism ι` : C ∼−→ Q` that induces the place λ.
• Let Σlr

+ be a finite set of finite places of F+ that are inert in F , which is strongly disjoint from Σmin
+

and satisfies ` ∤ ‖v‖ (‖v‖2 − 1) for any v ∈ Σlr
+.

• Let Σ+ be a finite set of finite places of F+ containing Σmin
+ and Σlr

+.

• Let φΠ : TΣ+
N → OE be the Hecke character attached to Π (see Definition 3.1.9).

• Let ρΠ,λ : GalF → GLN (Eλ) be the continuous homomorphism attached to Π (see Definition 3.1.6).
In particular, ρc

Π,λ and ρ∨
Π,λ(1−N) are conjugate.

• Let V ◦
N = (V◦

N ,Λ◦
N ,K

◦
N ) be a triple, where3

(1) V◦
N is a standard definite Hermitian space over F of dimension N (see Definition 3.2.1) such

that (V◦
N )v is not split for v ∈ Σlr

+ when N is even;

(2) Λ◦
N is a self-dual

∏
v∈Σfin

F+
rΣmin

+
OFv -lattice in V◦

N ⊗F+ A∞,Σmin

F+
;

(3) K◦
N is an object in K(V◦

N ) of the form

K◦
N =

∏
v∈Σ+

(K◦
N )v ×

∏
v∈Σfin

F+
rΣ+

U(Λ◦
N )(Ov),

satisfying that when N is even, (K◦
N )v is a hyperspecial maximal subgroup of U(V◦

N )(Fv) for
v ∈ Σ+ ∖ (Σlr

+ ∪ Σmin
+ ), and is a special maximal subgroup of U(V◦

N )(Fv) for v ∈ Σlr
+

such that
Oλ[Sh(V◦

N ,K
◦
N )]

TΣ+
N ∩ kerφΠN

is nontrivial when N is even.
• Let m ∈ Z+ be a positive integer.
• Let p be a very good inert place of F+ with the underlying rational prime p (see Definition 3.3.3),

satisfying4

(P1) p is strongly disjoint from Σ+;
(P2) ` does not divide p(p2 − 1);
(P3) There exists a CM type Φ containing τ∞ with QΦ

p2 = Qp2 (we refer to [LTX+22, §3.3] for the
definitions).

(P4) If N is even, then Pα(Πp)(mod λm) is level-raising special at p; if N is odd, then Pα(Πp)(mod λ)
is Tate generic at p (see Definition 3.1.4);

(P5) Pα(Πp)(mod λ) is intertwining generic at p.
In particular, we can and will apply the construction and notations in [LTX+22, §5.1] to the datum
(V◦

N , {Λ◦
N,q}|q|p); cf. the beginning of [LTX+22, §5.2]. Denote by

m := T
Σ+∪ΣF+ (p)
N ∩ ker

(
TΣ+
N

φΠ−−→ OE → OE/λ
)

and
n := T

Σ+∪ΣF+ (p)
N ∩ ker

(
TΣ+
N

φΠ−−→ OE → OE/λm
)

the two ideals of TΣ+∪ΣF+ (p)
N .

• Let T = (Φ,W0,K
p
0 , ιp, $) be a quintuple of data as in [LTX+22, §5.1] with QΦ

p = Qp2 , which is
possible because p is very good inert.

• Let Λ•
N,p be a lattice in V◦

N ⊗F Fp satisfying
– Λ◦

N,p ⊂ Λ•
N,p ⊂ p−1Λ◦

N,p, and

3Compared with [LTX+22, §6.1], we omit the assumption that (K◦
N )v is transferable when N is even, which is possible by

[LTX+25, Remark 8.2]
4Compared with [LTX+22, §6.1], we omit the assumption (PI6), because it will be redundant for applications in view of
[LTX24, Lemma 4.2.4(2)].
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– pΛ•
N,p ⊂ Λ•,∨

N,p and Λ•,∨
N,p/pΛ•

N,p has length 1−(−1)N

2 .
• Let K•

N,p denote the stabilizer of Λ•
N,p in U(V′

N ⊗F Fp), and set K•
N,p := K•

N,p×
∏

q∈ΣF+ (p)r{p} K
◦
q .

• Let UN =
(
V′
N , {Λ′

N,q}q|p,K
′
N,p, jN

)
be an indefinite uniformization datum for V◦

N , which means
– V′

N is a standard indefinite Hermitian space over F of dimension N ;
– for every place q of F+ lying above p other than p, Λ′

N,q is a self-dual OFq
-lattice in V′ ⊗F Fq;

– Λ′
N,p is an OFp

-lattice in V ′ ⊗F Fp satisfying Λ′
N,p ⊂ (Λ′

N,p)∨ and (Λ′
N,p)∨/Λ′

N,p has length 1;
– K′

N,p =
∏

q∈ΣF+ (p) K
′
N,q, where K′

N,q is the stabilizer of Λ′
N,q in U(V′

N ⊗F Fq) for each q ∈
ΣF+(p); and

– jN : V◦
N ⊗Q A∞,p → V′

N ⊗Q A∞,p is an isometry.
• Set K

p,◦
N := (K◦

N )p, and K•
N := K

p,◦
N ×K•

N,p.
• Set X?

N := X?
p(V◦

N ,K
p,◦
N ) for meaningful pairs (X, ?) ∈ {M,M,B,S}×{ , η, ◦, •, †}, and let (Ep,qs ,dp,qs )

denote the weight spectral sequence abutting to the cohomology H•
T(MN ,RΨOλ(r)) from [LTX+22,

§5.9].

Assumption 3.4.2. The composite homomorphism TΣ+
N

φΠ−−→ OE → κλ is cohomologically generic (see
Definition 3.2.5).

Assumption 3.4.3. The Galois representation ρΠ,λ (resp. ρΠ[,λ) is residually absolutely irreducible when
N is even (resp. N is odd).

Under Assumption 3.4.3, we get a residual representation ρΠ,λ, which is unique up to conjugation and
(1−N)-polarizable in the sense of [LTX+22, Definition 2.5.3]. Then we obtain a continuous homomorphism
(3.2) ρΠ,λ,+ : GalF+ → GN (κλ)

from [LTX+22, Construction 2.5.4].

Definition 3.4.4. We say a standard pair (V, π) (see Definition 3.2.1) with dimF V = N is Π-congruent
(outside Σ+ ∪ΣF+(p)) if for any finite place v of F+ not in Σ+ ∪ΣF+({p, `}), πv is unramified, and the two
homomorphisms ι`φα(BC(π)v) and ι`φα(Πv) from TN,v to Q`, taking values in Z`, coincide in F`.

Lemma 3.4.5. Assume Assumption 3.4.3. Then the natural maps

Hi
ét,c

(
Sh

(
V′
N , jNK

p◦
N K′

p,N

)
F
,Oλ

)
m
→ Hi

ét

(
Sh

(
V′
N , jNK

p◦
N K′

p,N

)
F
,Oλ

)
m

Hi
T,c

(
M•
N ,Oλ

)
m
→ Hi

T

(
M•
N ,Oλ

)
m

are both isomorphisms for every i ∈ N.

Proof. We follow the proof of [LTX+22, Lemma 6.1.11]. We abbreviate Sh := Sh
(
V′
N , jNK

p◦
N K′

p,N

)
.

By [LTX+22, Lemma 5.2.7] and the description of the weight spectral sequences (Ep,qs ,dp,qs ) in [LTX+22,
Lemma 5.9.2] (for N odd) and [LTX+22, Lemma 5.9.3] for N even, it suffices to show that the first map is
an isomorphism for every i ∈ N. This is trivial if F+ 6= Q, because in that case Sh is proper.

If F+ = Q, then the Witt index of V′
N is 1. In that case, the Shimura variety Sh has a unique toroidal

compactification [AMRT75], which we denote by S̃h. Since the choice of the relevant combinatorial data
is unique, S̃h is smooth over F . As jNK

p◦
N K′

p,N is neat, the boundary Z := S̃h ∖ Sh is geometrically
isomorphic to a disjoint union of abelian varieties of dimension N − 2. In particular, Hi

ét(ZF ,OF ) is a
finite free Oλ-module. Let π′∞ be an irreducible admissible representation of U(V′

N )(A∞
F+

) that appears in
Hi

ét(ZF ,Oλ) ⊗Oλ,ι
−1
`

C. Then π′∞ extends to an automorphic representation π′ of U(V′
N )(AF+) that is a

subquotient of the parabolic induction of a cuspidal automorphic representation πL of L(AF+) where L is
the unique proper Levi subgroup of U(V′

N ) up to conjugation.
We write L = U(VN−2)×ResF/F+GL1, where VN−2 is a standard definite Hermitian spaces of dimension

N − 2 contained in VN (if N = 2, U(VN−2) denotes the trivial group). Then we can write πL = πN−2 ⊠ χ
where πN−2 is a cuspidal automorphic representation of U(VN−2) and χ is an automorphic character of
GL1(AF ). In particular, BC(π′) is of the form BC(π′) = BC(πN−2) ⊞ χ ⊞ χ−1. Then it is impossible
that the (semi-simplified) residual representation of ρBC(π′) is conjugate to that of ρΠ, as the latter has
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an irreducible component of at least dimension max(2, N − 1) (Note that 2 is even). Thus Hi
ét(ZF ,Oλ)m

vanishes, because for any automorphic representation π such that π∞ appearing in Hi
ét(ZF ,Oλ)m⊗Oλ,ι

−1
`

C,
ρBC(π) should have (semi-simplified) residual representation conjugate to that of ρΠ. This implies that

Hi
ét,c(Sh,Oλ)m

∼−→ Hi
ét(Sh,Oλ)m

is an isomorphism for every i ∈ N. □

Lemma 3.4.6. Let (V, π) be a Π-congruent standard pair. If Assumption 3.4.3 holds, then BC(π) is a
relevant automorphic representation of GLN (AF ) (see Definition 1.1.3).

Proof. Let ρBC(π),ι` : GalF → GLN (Q`) denote the Galois representation attached to π (see Proposi-
tion 3.2.2). Since (V, π) is Π-congruent, by the Chebotarev density theorem, ρBC(π),ι` admits a lattice
whose semisimplified residual representation ρBC(π),ι` is isomorphic to ρΠ,λ ⊗κλ

F`, which is irreducible
(resp. the sum of an irreducible Galois representation with a character) if N is even (resp. odd). If N is
even, then ρBC(π),ι` is irreducible, so BC(π) must be cuspidal. If N is odd, then ρBC(π),ι` is either irreducible
or a sum of a character and an irreducible Galois representation. In the former case, BC(π) is cuspidal and
conjugate self-dual. Assume now that N is odd and BC(π) is not cuspidal. Then BC(π) must be the isobaric
sum of a conjugate self-dual cuspidal automorphic representation of GLN−1(AF ) and a conjugate self-dual
character χ of GL1(AF ).

We now show that BC(π) is relevant. By the above argument, it suffices to show that BC(π)w is
isomorphic to Πw for every infinite place w of F . Let

Hi
(2)(Sh) := lim←−

K∈K′(V)
Hi

(2)(Sh(V,K),C)

be the L2-cohomology as defined in [Fal83, §6], It follows from (an analogue of) Lemma 3.4.5 that there are
isomorphisms

lim
K∈K′(V)

ι−1
` Hi

ét,c(Sh(V,K)F ,Q`)m ∼= ι`Hi
(2)(Sh)m ∼= lim

K∈K′(V)
ι−1
` Hi

ét(Sh(V,K)F ,Q`)m.

In particular, π∞ appears in ι`Hi
(2)(Sh). By Borel–Casselman’s decomposition of Hi

(2)(Sh) [BC83], we see
that π∞ is cohomological for the trivial representation of ResF+/QU(V). In particular, BC(π)w is isomorphic
to Πw for every infinite place w of F . □

Lemma 3.4.7. Let N be odd and assume Assumption 3.4.2 and Hypothesis 3.2.3 for N . Then for any
object K′p

N ∈ K(V′
N )p and hyperspecial maximal subgroup K′hs

p of U(V′
N )(F+,p), there are isomorphisms

Hi
ét(Sh(V′

N ,K
′p
NK′

N,p)F ,Oλ)m ∼= Hi
ét(Sh(V′

N ,K
′p
NK′hs

N,p)F ,Oλ)m

Proof. As both K′
N,p and K′hs

N,p are special maximal subgroups of U(V′
N )(F+,p), the proof of [LTX+22,

Lemma 8.1.7] goes through, noticing that for every cuspidal automorphic representation π′ of U(V′)(AF+)
appearing in either

Hi
ét(Sh(V′

N ,K
′p
NK′

N,p)F ,Oλ)m ⊗Oλ
Q`

or
Hi

ét(Sh(V′
N ,K

′p
NK′hs

N,p)F ,Oλ)m ⊗Oλ
Q`,

the semisimplified residual representations of ρBC(π′),ι` and ρΠ,ι` are conjugate as F`[GalF ]-modules by the
Chebotarev density theorem. □

3.5. Tate classes in the odd rank case. In this subsection, we assume that N is odd, and work in the
setting of Setup 3.4.1.

Lemma 3.5.1. Hi
T(M†

N ,Oλ)m vanishes for every odd integer i.

Proof. We follow the proof of [LTX+22, Lemma 6.2.1]. If i 6= 2r − 1, this follows from [LTX+22,
Lemma 5.6.2(1)]. We now assume i = 2r − 1.

Suppose that π∞,p is an irreducible admissible representation of U(V◦
N )(A∞,p

F+
) that appears in the

cohomology H2r−1
T (M†

N ,Oλ)m ⊗Oλ,ι
−1
`

C. By [LTX+22, Proposition 5.6.4], we may complete π∞,p to an
automorphic representation π as in that proposition, such that (V◦

N , π) is a Π-congruent standard pair, and
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that BC(πp) is a constituent of an unramified principal series of GLN (Fp), whose Satake parameter contains
−p and −p−1 (which is then different from α(Πp) in F` by (P5)). On the other hand, the semisimplified
residual representations of ρBC(π),ι` and ρΠ,ι` are isomorphic. In particular, they have the same generalized
Frobenius eigenvalues in F` at the unique place of F over p. However, this is not possible by Arthur’s
multiplicity formula (see [KMSW14, Theorem 1.7.1]), Proposition 2.1.1(3) and Proposition 3.2.2. Therefore,
we must have H2r−1

T (M†
N ,Oλ)m = 0. □

Proposition 3.5.2. Assume Assumption 3.4.2 and Hypothesis 3.2.3 for N .
(1) Ep,q2,m vanishes unless (p, q) = (0, 2r), and E0,2r

2,m is canonically isomorphic to H2r
T (MN ,RΨOλ(r))m,

which is a free Oλ-module.
(2) The set of generalized Frobenius eigenvalues of the κλ[GalFp2 ]-module E0,2r

2,m ⊗Oλ
κλ is contained in

the set of roots of Pα(Πp)(mod λ) in F`.
(3) The Oλ[GalFp2 ]-module E0,2r

2,m is weakly semisimple.
(4) The localization of the map ∇1 at m induces an isomorphism

∇1
m :

(
E0,2r

2,m

)
GalF

p2

∼−→ Oλ[Sh(V◦
N ,K

◦
N )]m.

Proof. For (1), by Lemma 3.5.1, the same proof of [LTX+22, Lemma 6.2.2(3)] goes through.
Next we prove parts (2)-(4). Firstly it follows from the proof of [LTX+22, Theorem 6.2.3] and [LTX24,

Lemma 4.2.4] that ∇1
m is surjective. By [LTX+22, Lemma 5.2.7] and part (1), there is an isomorphism

(3.3) E0,2r
2,m
∼= H2r

ét

(
Sh

(
V′, jNK

◦,p
N K′

N,p

)
F
,Oλ(r)

)
m

of Oλ[GalQp2 ]-modules. By Lemma 3.4.6, 3.4.5, Hypothesis 3.2.3 and Arthur’s multiplicity formula
[KMSW14, Theorem 1.7.1], there is an isomorphism

(3.4) H2r
ét

(
Sh

(
V′, jNK

◦,p
N K′

N,p

)
F
,Oλ(r)

)
m
⊗Oλ

Q` ∼=
⊕
π′∞

(
WN−1(π′∞)

)⊕d(π′∞)

of Q`[GalF ]-modules, where d(π′∞) = dim (π′∞)jNK
◦,p
N

K′
N,p ; and the sum is taken over all admissible irre-

ducible representations π′∞ of U(V′)(A∞
F+

) that is the finite part of some automorphic representation π′

of U(V′)(AF+) satisfying (V′, π′) is a standard pair. Here we choose such a π′ for each π′∞ appearing in
the direct sum. For the proof of parts (2-4), we may replace Eλ by a finite extension inside Q` such that
WN−1(π′∞) is defined over Eλ for each π′∞ appearing in the previous direct sum. For each such π′∞,
WN−1(π′∞) is conjugate to an irreducible subrepresentation of ρc

Π,ι` by Hypothesis 3.2.3. Thus part (2)
follows from Equations (3.3), (3.4) and part (1).

For (3), we choose a GalF -stable Oλ-lattice RN−1(π′∞) of WN−1(π′∞) for each π′∞ appearing in the
previous direct sum. We claim that RN−1(π′∞) is weakly semisimple, which implies part (3) by [LTX+22,
Lemma 2.1.4(1)]. By (P4), we know ρc

Π,λ(r) is weakly semisimple, and

dimκλ
ρΠ,λ(r)GalF

p2 = 0, dimκλ
ρΠ[,λ(r)GalF

p2 = 1.

If dimEλ
WN−1(π′∞) is odd, then

dimEλ
WN−1(π′∞)GalF

p2 ≥ 1.
Thus RN−1(π′∞) is weakly semisimple by [LTX+22, Lemma 2.1.5]. On the other hand, if dimEλ

WN−1(π′∞)
is even, then BC(π′) is almost cuspidal, and RN−1(π′∞)⊗Oλ

κλ is conjugate to ρΠ[,λ as κλ[GalF ]-modules.
Thus RN−1(π′∞) is also weakly semisimple by [LTX+22, Lemma 2.1.5].

For (4): By the above discussion, it suffices to show∑
π′∞

d(π′∞) ≤ dimEλ
Oλ[Sh(V◦

N ,K
◦
N )]m ⊗Oλ

Eλ,

where π′∞ is taken over all those appearing in the previous direct sum satisfying dimEλ
WN−1(π′∞) is odd.

This assertion follows from Lemma 3.4.7 and Lemma 3.5.3 below. □
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Lemma 3.5.3. Let π′ be an automorphic representation of U(V′)(AF+) such that BC(π′) is relevant. If N
is odd and BC(π′) = Π[ ⊞ χ is almost cuspidal, we further assume the following conditions.

• The local component π′
p is unramified with Satake parameter containing 1 exactly once.

• Set I = {N − 1, N − 3, . . . , 3 − N, 1 − N}, in particular χτ∞
(z) = arg(z)aχ for some aχ ∈ I. Let

κχ : µI
2 → C× denote the character that takes value −1 on the generator corresponding to aχ ∈ I

and takes value 1 on all other generators. Then π′
τ∞

is isomorphic to the discrete series πκχ (with
Harish-Chandra parameter (r, r − 1, . . . , 1− r,−r)) as defined in [LL21, Notation 3.14].

Consider the admissible irreducible representation π := πτ∞
⊗ πp ⊗ (π′)τ∞,p of U(V◦)(AF+) where

• πτ∞
is the trivial representation of U(V◦ ⊗F Fτ∞

);
• πp is an unramified representation of U(V◦ ⊗F Fp) satisfying BC(πp) = BC(π′

p).
Then the automorphic multiplicity of π is 1.

Proof. This follows from Arthur’s multiplicity formula for tempered global L-packets; cf.[KMSW14, Theo-
erm 1.7.1]. □

3.6. Arithmetic level-raising in the even rank case. In this subsection, we assume that N is even and
work in the setting of Setup 3.4.1.

We recall the following definition of rigid residual Galois representations from [LTX+24, §3.6].

Definition 3.6.1. Let r : GalF+ → GN (κλ) be a continuous homomorphism satisfying

r−1(GLN (κλ)×GL1(κλ)) = GalF , ν ◦ r = ηNF/F+
ε1−N
` .

We say r is rigid for (Σmin
+ ,Σlr

+) if the following are satisfied:
(1) For v ∈ Σmin

+ , any lifting r : GalF+ → GN (κλ) with ν ◦ r = ηNF/F+
ε1−N
` is minimally ramified as

defined in [LTX+24, Definition 3.4.8].
(2) For v ∈ Σlr

+, the set of generalized eigenvalues of r\v(φw) contains the pair {‖v‖−N
, ‖v‖−N+2} exactly

once, where w is the unique place of F over v.
(3) For v ∈ ΣF+(`), r\v is regular Fontaine–Laffaille crystalline as defined in [LTX+24, Definition 3.2.4].
(4) For a finite place of F+ not in Σmin

+ ∪ Σlr
+ ∪ ΣF+(`), rv is unramified.

We state the following variant of the R=T theorem in [LTX+24] suitable for our case. We apply the
discussion of [LTX+24, §3] to the pair (r, χ) = (ρΠ,λ,+, ε

1−N
` ). Suppose r is rigid for (Σmin

+ ,Σlr
+). For each

? ∈ {mix,unr, ram}, we consider the global deformation problem (see [LTX+24, Definition 3.6])

S ? =
(
r, ε1−N

` ,Σmin
+ ∪ Σlr

+ ∪ {p} ∪ ΣF+(`), {Dv}v∈Σmin
+ ∪Σlr

+∪{p}∪ΣF+ (`)

)
where

• for v ∈ Σmin
+ , Dv is the local deformation problem classifying all liftings of rv;

• for v ∈ Σlr
+, Dv is the local deformation problem D ram of rv from [LTX+24, Definition 3.34];

• for v = p, Dv is the local deformation problem D? of rv from [LTX+24, Definition 3.34];
• for v ∈ ΣF+(`), Dv is the local deformation problem DFL of rv from [LTX+24, Definition 3.12].

Then the global universal deformation ring Runiv
S ? is defined in [LTX+24, Proposition 3.7]. Set R? := Runiv

S ?

for short. Then there are canonical surjective homomorphisms Rmix → Runr and Rmix → Rram of Oλ-rings.
We have the following corollary of the R = T theorem from [LTX+24].

Theorem 3.6.2. Assume Assumptions 3.4.2 and Hypothesis 3.2.3 for N . We further assume that ` ≥
2(N + 1), ρΠ,λ,+ (Equation (3.2)) is rigid for (Σmin

+ ,Σlr
+), and ρΠ,λ|GalF (µ`) is absolutely irreducible.

• Let Tunr denote the image of TΣ+∪{p}
N in EndOλ

(Oλ[Sh(V◦
N ,K

◦
N )]). Then there is a canonical

isomorphism Runr ∼= Tunr of nonzero local rings such that Oλ[Sh(V◦
N ,K

◦
N )] is a nonzero finite free

module over Runr.
• Let Tram denote the image of TΣ+∪{p}

N in EndOλ

(
H2r−1

T (MN ,RΨOλ)
)
. Then there is a canonical

isomorphism Rram ∼= Tram of nonzero local rings such that Oλ[Sh(V◦
N ,K

◦
N )] is a nonzero finite free

module over Rram.
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Proof. For (1): This follows from [LTX+24, Theorem 3.38], except that when v ∈ Σfin
F+

∖ Σmin
+ , the level

group (K◦
N )v is a hyperspecial but may not be the stabilizer of a self-dual lattice in U(V◦

N )(F+,v). However,
the proof of [LTX+24, Theorem 3.38] goes through.

For (2): By [LTX+22, Proposition 3.6.1], we know Tram is nonzero. Thus by [LTX+22, Lemma 5.2.7]
and the same reason as in (1), the assertion follows from [LTX+24, Theorem 3.38] (with (Σmin

+ ,Σlr
+) replaced

by (Σmin
+ ,Σlr

+ ∪ {p})). □

Proposition 3.6.3. Assume Assumptions 3.4.2 and Hypothesis 3.2.3 for N . Assume further that ` ≥
2(N + 1), ρΠ,λ,+ (Equation (3.2)) is rigid for (Σmin

+ ,Σlr
+), and ρΠ,λ|GalF (µ`) is absolutely irreducible.

(1) Hi
T

(
M•
N ,Oλ

)
m

is a free Oλ-module for every i ∈ Z+.

(2) Ep,q2,m is a free Oλ-module, and vanishes unless p+ q = 2r − 1 and |p| ≤ 1.

(3) The set of generalized Frobenius eigenvalues of the κλ[GalFp2 ]-module H2r−1
T (M•

N ,Oλ(r))m⊗Oλ
κλ is

contained in the set of roots of Pα(Π0,p)(p−1T )(mod λ) in F`, and does not contain 1 or p2.
(4) The quotient modulo n of the map ∇0

m induces an isomorphism

∇0
/n : F−1H1

(
IQp2 ,H2r−1

T

(
MN ,RΨOλ(r)

)
/n

)
∼−→ Oλ[Sh(V◦,K◦

N )]/n.

Here F−1 is the degree −1 term of the monodromy filtration.
(5) There is a natural isomorphism

F−1H1
(
IQp2 ,H2r−1

ét
(
MN ,RΨOλ(r)

)
/n

)
∼= H1

sing
(
Qp2 ,H2r−1

ét
(
MN ,RΨOλ(r)

)
/n

)
.

(6) There exists a positive integer µ ∈ Z+ and an isomorphism

H2r−1
ét

(
Sh

(
V′
N , jNK

∞,p
N K′

N,p

)
F
,Oλ(r)

)
/n ∼=

(
R(m)c

)⊕µ

of Oλ[GalF ]-modules, where R is a GalF -stable Oλ-lattice in ρΠ,λ(r), unique up to homothety.

Proof. For (1)-(3): Using Theorem 3.6.2, the proof of [LTX+22, Theorem 6.3.4(1)-(3)] goes through.
For (6)-(7): By the proof of [LTX+22, Theorem 6.3.4(4)], these follow from [LTX+22, Proposition 6.4.1],

[LTX24, Lemma 4.2.4(2)] and Theorem 3.6.2. □

3.7. First explicit reciprocity law. We now work in the following setup.

Setup 3.7.1.
• Let n ≥ 2 be an integer. Among {n, n+ 1}, n0 = 2r0 (resp. n1 = 2r1 + 1) be the unique even (resp.

odd) number in the set {n, n+ 1}. In particular, r0 + r1 = n.
• Let Π0 be a cuspidal relevant representation of GLn0(AF ), and let Π1 be an almost cuspidal relevant

representation of GLn1(AF ) of the form Π1 = Π[
1 ⊞ 1, where 1 is the trivial character of GL1(AF )

(see Definition 1.1.3).
• Let E ⊂ C be a strong coefficient field of Π (see Definition 3.1.6).
• For each α ∈ {0, 1} and each finite place λ of E, let ρΠα,λ : GalF → GLnα

(Eλ) be the continuous
homomorphism attached to Πα (see Definition 3.1.6). In particular, ρc

Πα,λ
and ρ∨

Πα,λ
(1 − nα) are

conjugate.

• For each α ∈ {0, 1}, let φΠα
: TΣΠ0

+ ∪ΣΠ1
+

nα → OE be the restriction of the Hecke character defined in
Definition 3.1.9.

We further assume that we are in the following setting.

Setup 3.7.2. Let (λ,Σlr,I
+ ,ΣI

+,V
◦,m, p,T ,V •,U ) be a nonuple, where

• λ is a finite place of E whose underlying prime ` satisfies ΣΠ0
+ ∩ ΣF+(`) = ∅ and ` ≥ 2(n0 + 1).

• Σlr,I
+ is a finite set of finite inert places of F+ strongly disjoint from ΣΠ0

+ ∪ΣΠ1
+ (see Definition 3.1.1)

satisfying ` ∤ ‖v‖ (‖v‖2 − 1) for any v ∈ Σlr,I
+ .

• ΣI
+ is a finite set of finite places of F+ containing Σlr,I

+ and ΣΠ0
+ ∪ ΣΠ1

+ .
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• V ◦ = (V◦
n,V◦

n+1; Λ◦
n,Λ◦

n+1;K◦
n,K

◦
sp,K

◦
n+1) is a septuple, where5

(1) V◦
n is a standard definite Hermitian space over F of dimension N (see Definition 3.2.1), and

V◦
n+1 = (V◦

n)], such that (V◦
n0

)v is not split for v ∈ Σlr,I
+ .

(2) Λ◦
n is a self-dual

∏
v∈Σ∞

F
rΣI

+
OFv -lattice in V◦

n ⊗F+ A∞,ΣI
+

F+
;

(3) K◦
n is an object in K(V◦

n) and (K◦
sp,K

◦
n+1) is an object in K(V◦

n)sp of the forms

K◦
n =

∏
v∈ΣI

+

(K◦
n)v ×

∏
v∈Σfin

+ rΣI
+

U(Λ◦
n)(Ov),

K◦
sp =

∏
v∈ΣI

+

(K◦
sp)v ×

∏
v∈Σfin

+ rΣI
+

U(Λ◦
n)(Ov),

K◦
n+1 =

∏
v∈ΣI

+

(K◦
n+1)v ×

∏
v∈Σfin

+ rΣI
+

U(Λ◦
n+1)(Ov),

satisfying
– (K◦

sp)v ⊂ (K◦
n)v for v ∈ ΣI

+, and

– (K◦
n0

)v is a hyperspecial maximal subgroup of U(V◦
n0

)(Fv) for v ∈ ΣI
+ ∖ (Σlr,I

+ ∪ ΣΠ0
+ ),

and is a special maximal subgroup of U(V◦
n0

)(Fv) for v ∈ Σlr,I
+

such that
Oλ[Sh(V◦

n0
,K◦

n0
)]

TΣI
+

n0 ∩ kerφΠn0

is nontrivial.
• m ∈ Z+ is a positive integer,
• p is a very good inert place of F+ with the underlying rational prime p (see Definition 3.3.3),

satisfying6

(PI1) p is strongly disjoint from ΣI
+;

(PI2) ` does not divide p(p2 − 1);
(PI3) There exists a CM type Φ containing τ∞ as in [LTX+22, §5.1] with QΦ

p2 = Qp2 (we refer to
[LTX+22, §3.3] for the definitions).

(PI4) Pα(Π0,p)(mod λm) is level-raising special at p, Pα(Π1,p)(mod λ) is Tate generic at p, and
Pα(Π0,p)⊗α(Π1,p)(mod λm) is level-raising special at p (see Definition 3.1.4);

(PI5) Pα(Πα,p)(mod λ) is intertwining generic at p for each α ∈ {0, 1}.
In particular, we can and will apply the construction and notations in [LTX+22, §5.10] to the datum
(V◦

n, {Λ◦
n,q}|q|p). For each α ∈ {0, 1}, denote by

mα := T
ΣI

+∪ΣF+ (p)
nα ∩ ker

(
TΣΠ0

+ ∪ΣΠ1
+

nα

φΠ−−→ OE → OE/λ
)

and
nα := T

ΣI
+∪ΣF+ (p)

nα ∩ ker
(
TΣΠ0

+ ∪ΣΠ1
+

nα

φΠ−−→ OE → OE/λm
)

the two ideals of TΣI
+∪ΣF+ (p)

nα .
• T = (Φ,W0,K

p
0 , ιp, $) is a quintuple of data as in [LTX+22, §5.1] with QΦ

p = Qp2 .

• V • = (Λ•
n,p,Λ•

n+1,p;K•
n,p,K

•
n+1,p,K

•
sp,p;K†

n,p,K
†
sp,p,K

†
n+1,p) is an octuple of data as in [LTX+22,

Notation 5.10.13]. For each α ∈ {0, 1}, we set K◦,p
nα

:= (K◦
nα

)p, and K•
nα

:= K◦,p
nα
×K•

nα,p.

5Compared with [LTX+22, §7.2], we omit the assumption that (K◦
N )v is transferable when N is even, which is possible by

[LTX+25, Remark 8.2]
6Compared with [LTX+22, §7.2], we incorporate (PI7) into (PI4), and omit assumption (PI6) as it will be redundant for
applications in view of [LTX24, Lemma 4.2.4(2)].
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• U =
(
V′
n, jn, {Λ′

n,q}q|p; V′
n+1, jn+1, {Λ′

n+1,q}q|p
)

is a sextuple in which
(
V′
n, jn, {Λ′

n,q}q|p
)

is an
indefinite uniformization datum for V◦

n as in Setup 3.4.1, V′
n+1 := (V′

n)], jn+1 := (jn)], and
Λn+1,q = (Λn,q)] for each q|p. Then

(
V′
n+1, jn+1, {Λ′

n+1,q}q|p
)

is an indefinite uniformization datum
for V◦

n+1. For each α ∈ {0, 1}, let K′
nα,q denote the stabilizer of Λ′

nα,q, and set K′
nα,p

:=
∏

q|pK
′
nα,q.

For each α ∈ {0, 1}, we set X?
nα

:= X?
p(V◦

nα
,Kp,◦

nα
) for meaningful pairs (X, ?) ∈ {M,M,B,S} ×

{ , η, ◦, •, †}, and let (αEp,qs , αdp,qs ) denote the weight spectral sequence abutting to the cohomology
H•

T(Mnα ,RΨOλ(rα)) from [LTX+22, §5.9].

Assumption 3.7.3. ρΠ0,λ and ρΠ[
1,λ

are residually absolutely irreducible.

Under Assumption 3.7.3, for each α ∈ {0, 1}, we get a residual representation ρΠα,λ, which is unique
up to conjugation and (1 − nα)-polarizable in the sense of [LTX+22, Definition 2.5.3]. Then we obtain a
continuous homomorphism

(3.5) ρΠα,λ,+ : GalF+ → Gnα
(κλ)

from [LTX+22, Construction 2.5.4].

Assumption 3.7.4. Assumption 3.7.3 holds, ρΠ0,λ,+ is rigid for (ΣΠ0
+ ,Σlr,I

+ ) (see Definition 3.6.1), and
ρΠ0,λ|GalF (µ`) is absolutely irreducible.

Assumption 3.7.5. For each α ∈ {0, 1}, the composite homomorphisms TΣmin+
nα

φΠα−−−→ OE → κλ is cohomo-
logically generic (see Definition 3.2.5).

In the following we will freely use the notation from [LTX+22, §7.2].
We apply the construction and notation of [LTX+22, §5.11], evaluating on the object (K◦,p

n ,K◦,p
n+1) ∈

K(V◦
n)p × K(V◦

n+1)p. In particular, we obtain the blow-up morphism σ : Q → P from [LTX+22, Nota-
tion 5.11.1], and the localized weight spectral sequence

(
Ep,qs,(m0,m1),d

p,q
s,(m0,m1)

)
abutting to the cohomology

H•
T(Q,RΨOλ(n))(m0,m1) from [LTX+22, (5.27)].

Lemma 3.7.6. Assume Assumptions 3.7.4, 3.7.5 and Hypothesis 3.2.3 for each N ∈ {n, n+ 1}. Then
(1) For any (?0, ?1) ∈ {◦, •, †}2 and any i ∈ Z, there is a canonical isomorphism

Hi
T

(
P?0,?1

,Oλ(i)
)

(m0,m1)
∼=

⊕
i0+i1=i

Hi0
T

(
M?0
n0
,Oλ

)
m0
⊗Oλ

Hi0
T

(
M?1
n1
,Oλ

)
m1

in Mod(GalFp2 ,Oλ)fr.
(2) Ep,q2,(m0,m1) vanishes unless (p, q) ∈ {(−1, 2n), (0, 2n− 1), (1, 2n− 2)}, and canonical isomorphisms

E−1,2n
2,(m0,m1)

∼= 0E−1,2r0
2,m0

⊗Oλ
1E0,2r1

2,m1
,

E0,2n−1
2,(m0,m1)

∼= 0E0,2r0−1
2,m0

⊗Oλ
1E0,2r1

2,m1
,

E1,2n−2
2,(m0,m1)

∼= 0E1,2r0−2
2,m0

⊗Oλ
1E0,2r1

2,m1
,

in Mod(GalFp2 ,Oλ)lr. In particular, Hi
T

(
Q,RΨOλ(n)

)
(m0,m1) vanishes unless i = 2n− 1.

(3) If Ei,2n−1−i
2,(m0,m1)(−1) has a nontrivial subquotient on which GalFp2 acts trivially, then i = 1.

(4) For any (?0, ?1) ∈ {◦, •, †}2 and any i ∈ Z, H2i
T

(
Q?0,?1

,Oλ(i)
)

(m0,m1) is weakly semisimple.

(5) The canonical map Hi
T,c(Q

(c)
,Oλ)(m0,m1) → Hi

T(Q(c)
,Oλ)(m0,m1) is an isomorphism for any integers

c and i.

Proof. For (1), By [LTX+22, Lemma 5.6.2], Lemma 3.5.2(1) and Lemma 3.6.3(1), we know that
Hiα

(
M?α

nα
,Oλ

)
mα

is a free Oλ-module for every (α, iα, ?α) ∈ {0, 1} × N × {◦, •, †}. Thus (1) follows from
Lemma 3.4.5 and the Künneth formula.

For (2), Using Lemma 3.5.1, Propositions 3.5.2, 3.6.3(2) and Lemma 3.4.5, the proof of [LTX+22,
Lemma 7.2.5(2)] goes through.
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For (3), by inspecting the proof of [LTX+22, Lemma 7.2.5(3)], the assertion follows from Proposi-
tion 3.5.2(2) and Proposition 3.6.3(3).

For (4): Using Proposition 3.5.2, the proof of [LTX+22, Lemma 7.2.5(4)] goes through.
Part (5) follows from part (1), Lemma 3.4.5 and [LTX+22, Lemma 5.11.3(3-5)]. □

By Lemma 3.7.6(2), we obtain a coboundary map

AJQ : ZnT(Qη)→ H1
(
Qp2 ,H2n−1

T

(
Q,RΨOλ(n)

)
(m0,m1)

)
.

By our choice of K◦
n and (K◦

sp,K
◦
n+1), we obtain a finite morphism

Mp(V◦
n,K

◦
sp)→ P.

Denote by Psp the corresponding cycle, and by Qsp the strict transform of Psp under σ, and Qsp the special
fiber of Qsp.

We recall the construction of potential map from [LTX+22, §5.11]. For each r ∈ Z, set

Br(Q,Oλ) := ker
(
δ∗

0 : H2r
T

(
Q(0)

,Oλ(r)
)
→ H2r

T

(
Q(1)

,Oλ(r)
))

,

and

Bn−r(Q,Oλ) := Coker
(
δ1,! :H2(n+r−2)

T

(
Q(1)

,Oλ(n+ r − 2)
)

→ H2(n+r−1)
T

(
Q(0)

,Oλ(n+ r − 1)
) )

,

where δ∗
0 is a linear combination of pullback maps and δ1,! is a linear combination of pushforward maps; see

[LTX+22, p. 262]. Denote by Bn(Q,Oλ)0 and Bn(Q,Oλ)0 the kernel and cokernel of the tautological map
Bn(Q,Oλ)→ Bn−1(Q,Oλ),

respectively. By [Liu19, Lemma 2.4], the composite map

H2(n−1)
T

(
Q(0)

,Oλ(n− 1)
)

δ∗
0−→ H2(n−1)

T

(
Q(1)

,Oλ(n− 1)
)

δ1,!−−→ H2n
T

(
Q(0)

,Oλ(n)
)

factors through a unique map Bn(Q,Oλ)0 → Bn(Q,Oλ)0. Set

Cn(Q,Oλ) := Bn(Q,Oλ)
GalF

p2

0 , Cn(Q,Oλ) := Bn(Q,Oλ)0
GalF

p2
.

Then we obtain a potential map
∆n : Cn(Q,Oλ)→ Cn(Q,Oλ).

In particular, the cycle Qsp gives rise to a class cl(Qsp) ∈ Cn(Q,Oλ).

Proposition 3.7.7. Assume Assumptions 3.7.4, 3.7.5 and Hypothesis 3.2.3 for each N ∈ {n, n+ 1}. There
is a canonical isomorphism

H1
sing

(
Qp2 ,H2n−1

T

(
Q,RΨOλ(n)

)
(m0,m1)

)
∼= Coker ∆n

(m0,m1),

under which ∂AJQ(Qη
sp) is identified with the image of cl(Qsp) in Coker ∆n

(m0,m1).

Proof. Using Lemma 3.7.6, the proof of [LTX+22, Proposition 7.2.7] goes through. □

For each α ∈ {0, 1}, we set Sh′
nα

:= Sh(V′
nα
, jnα

K◦,p
nα

K′
nα,p). By [LTX+22, Construction 5.11.7 and

Remark 5.11.8], we obtain a map
∇ : Cn(Q,Oλ)→ Oλ[Sh(V◦

n0
,K◦

n0
)]⊗Oλ

Oλ[Sh(V◦
n1
,K◦

n1
)].

Under Assumption 3.7.3 and Assumption 3.7.5,
H2n

ét
(
(Sh′

n0
×SpecF Sh′

n1
)F ,Oλ

)
(m0,m1)

vanishes. This follows from [LTX+22, Lemma 5.2.7], Lemma 3.4.5, and the Künneth formula. In particular,
we obtain an Abel–Jacobi map

AJ : Zn
(
Sh′

n0
×SpecF Sh′

n1

)
→ H1

(
F,H2n−1

ét
((

Sh′
n0
×SpecF Sh′

n1

)
F
,Oλ(n)

)
(m0,m1)

)
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and its natural projection
AJ : Zn

(
Sh′

n0
×SpecF Sh′

n1

)
→ H1 (

F,H2n−1
ét

((
Sh′

n0
×SpecF Sh′

n1

)
F
,Oλ(n)

)
/(n0, n1)

)
.

Let Sh′
sp denote the cycle given by the finite morphism Sh(V′

n, jnK◦,p
sp K′

n,p)→ Sh′
n0
×SpecF Sh′

n1
.

Proposition 3.7.8. Assume Assumptions 3.7.4, 3.7.5 and Hypothesis 3.2.3 for each N ∈ {n, n+ 1}.
(1) The map ∇ descends modulo (n0, n1) to an isomorphism

∇/(n0,n1) : Coker ∆n/(n0, n1) ∼−→ Oλ[Sh(V◦
n0
,K◦

n0
)]⊗Oλ

Oλ[Sh(V◦
n1
,K◦

n1
)]/(n0, n1).

(2) The Hecke operator (p+ 1)I◦
n0,p ⊗ T◦

n1,p acts invertible on
Oλ[Sh(V◦

n0
,K◦

n0
)]⊗Oλ

Oλ[Sh(V◦
n1
,K◦

n1
)]/(n0, n1);

denote its inverse by T◦. Moreover,
∇/(n0,n1)(∂p AJQ)(Qη

sp) = T◦1Sh(V◦
n,K

◦
sp),

where 1Sh(V◦
n,K

◦
sp) is the pushforward of the characteristic function along the map Sh(V◦

n,K
◦
sp) →

Sh(V◦
n,K

◦
n)× Sh(V◦

n+1,K
◦
n+1).

(3)
expλ

(
∂plocpAJ(Sh′

sp),H1
sing

(
Fp,H2n−1

ét
((

Sh′
n0
×SpecF Sh′

n1

)
F
,Oλ(n)

)
/(n0, n1)

))
= expλ

(
1Sh(V◦

n,K
◦
sp),Oλ

[
Sh(V◦

n0
,K◦

n0
)× Sh(V◦

n1
,K◦

n1
)
]
/(n0, n1)

)
.

Proof. For (1): We follow the proof of [LTX+22, Theorem 7.2.8(2)]. Firstly, by Proposition 3.7.6(1), Propo-
sition 3.5.2(4) and Proposition 3.6.3(3), the map ∇/(n0,n1) is surjective. Thus it remains to show that the do-
main and the target of ∇/(n0,n1) are isomorphic as Oλ-modules. By the proof of [LTX+22, Theorem 7.2.8(2)],
this follows from Proposition 3.7.7, Lemma 3.7.6(2, 3), Proposition 3.5.2(4), and Proposition 3.6.3(4, 5).

For (2): p + 1 is invertible in Oλ by (PI2); I◦
n0,p ⊗ T◦

n1,p is invertible by (PI4, PI5), [LTX+22, Proposi-
tions B.3.5(1), B.4.3(2)] and [LTX24, Lemma 4.2.4(1)];

For (3): This follows from part (2) by the proof of [LTX+22, Corollary 7.2.9]. □

3.8. Admissible places. We now work in the setting of Setup 3.7.1.

Definition 3.8.1. We say that a finite place λ ∈ Σfin
E , with underlying prime `, is an admissible place (with

respect to (Π0,Π1)) if the following hold:7
(L1) ` ≥ 2(n0 + 1);
(L2) ΣΠ0

+ does not contain places lying above `;
(L3) The residual representations ρΠ0,λ and ρΠ[

1,λ
are both absolutely irreducible. Fix GalF -stable Oλ-

lattices R0 ⊂ ρΠ0,λ(r0) and R[
1 ⊂ ρΠ[

1,λ
(r1) (which are unique up to homothety), together with

isomorphisms Ξ0 : R0
∼−→ R∨

0 (1) and Ξ[1 : R[
1

∼−→ (R[
1)∨. Set R1 := R[

1 ⊕ Oλ and Ξ1 := Ξ[1 ⊕ id :
R1

∼−→ R∨
1 .

(L4-1) One of the following holds:
(a) The image of GalF in GL(R0) contains a nontrivial scalar element;
(b) R0 is a semisimple κλ[GalF ]-module and Homκλ[GalF ](End(R0),R0) = 0;

(L4-2) (GI1
F ′,P,R0,R1

) from Lemma 2.3.3 holds for F ′ = Frflx,+ and P(T ) = T 2 − 1;

(L5) The homomorphism ρΠ0,λ,+ is rigid for (ΣΠ0
+ ,∅) (see Definition 3.6.1), and ρΠ0,λ|GalF (µ`) is absolutely

irreducible; and

(L6) The composite homomorphism TΣΠ0
+ ∪ΣΠ1

+
nα

φΠα−−−→ OE → κλ is cohomologically generic (Defini-
tion 3.2.5) for every α ∈ {0, 1}.

To end this subsection, we give several examples where it is known that all but finitely many finite places
λ of E are admissible.
7Compared to [LTX+22, Definition 8.1.1], we omitted assumption (L3) because we will not consider the Bloch–Kato Selmer
group of the Galois representation ρΠ0,λ ⊗ ρΠ1,λ.
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Lemma 3.8.2. Suppose that
(1) there exists an elliptic curve A0 over F+ such that for every finite place λ of E,

ρΠ0,λ
∼= Symn0−1 H1

ét(AF , Eλ)|GalF
;

(2) there exists a good inert place p of F+ (see Definition 3.3.3) such that A0 has split multiplicative
reduction at p, and Π[

1,p is a supercuspidal B-avoiding good representation (see Definition A.1.2) for

B = {−‖p‖ , ‖p‖1±1
, ‖p‖1±3

, . . . , ‖p‖1±(2r−1)}

with respect to any isomorphism ι` : C ∼−→ Q` where ` is not a rational prime underlying p. Then all but
finitely many finite places λ of E are admissible (with respect to (Π0,Π1)).

Proof. We show that every condition in Definition 3.8.1 excludes only finitely many finite places of E. By
[Ser72, Théorème 6], for sufficiently large prime `, the homomorphism

ρA,`|GalF
: GalF → GL

(
H1

ét(AF ,F`)
)

is surjective. So we may assume that ` is large such that this is the case.
For (L1) and (L2), this is trivial.
For (L3), ρΠ0,λ is clearly absolutely irreducible, and the condition that ρΠ[

1,λ
is absolutely irreducible

only excludes finitely many finite places λ of E by [LTX+24, Theorem 4.5.(1)] and condition (2).
For (L4-1), condition (a) always holds.
For (L4-2), because A0 has split multiplicative reduction at p, Π0,p is the Steinberg representation by

[Roh94, §15]. Thus (L4-2) excludes only finitely many finite places λ of E, by the same reasoning as in the
proof of [LTX+22, Lemma 8.1.4].

For (L5), by [LTX+24, Corollary 4.2], the condition that ρΠ0,λ,+ is rigid for (Σmin
+ ,∅) excludes only

finitely many finite places λ of E. The second condition is clearly satisfied.
For (L6), for each α ∈ {0, 1}, we choose a finite place wα of F such that Πα,wα

is unramified with
Satake parameter {aα,1, . . . , aα,nα

}. By Proposition 2.1.1, |aα,i| = 1 for every 1 ≤ i ≤ nα. Thus, for every
sufficiently large rational prime `, aα,i/aαj

6= ‖w‖ for 1 ≤ i 6= j ≤ nα even in F`. Suppose λ is a finite place
of E lying above `. We fix an isomorphism ι` : C ∼−→ Q` which induces λ. Applying the Chebotarev density
theorem to the representation ρΠ,λ ⊕ ε` of GalF , we see that there are infinitely many finite places w′

α of F
that are of degree 1 over Q satisfying that

• Πα,w′
α

is unramified with Satake parameter {a′
α,1, . . . , a

′
α,nα
} in which ι`(a′

α,i) is an `-adic unit for
every 1 ≤ i ≤ nα, and

• ι`(a′
α,i/a

′
α,j) 6= ‖w′

α‖ ∈ F` for 1 ≤ i 6= j ≤ nα.
Then it follows from [YZ25, Theorem 1.5] that (L6) holds for λ. □

Lemma 3.8.3. Suppose that
(1) there exists a very good inert place p of F+ (see Definition 3.3.3) such that Π0,p is Steinberg, and

Π[
1,p is unramified with Satake parameter not containing 1; and

(2) for each α ∈ {0, 1}, there exist a finite place wα of F such that Πα,wα is supercuspidal;
Then all but finitely many finite places λ of E are admissible (with respect to (Π0,Π1)).

Proof. We show that every condition in Definition 3.8.1 excludes only finitely many finite places of E.
For (L1) and (L2), this is trivial.
For (L3), this follows from [LTX+24, Theorem 4.5.(1)] by (2).
For (L5), this follows from [LTX+24, Theorem 4.8] by (2).
For (L6), this follows from the same reasoning as in the proof of Lemma 3.8.2.
For (L4-1), this follows by the same reasoning as in the proof of [LTX+22, Lemma 8.1.4].
For (L4-2), this follows by the same reasoning as in the proof of [LTX+22, Lemma 8.1.4]. □

3.9. Proof of Theorem D. The following lemma is crucial for the proof of Theorem D, which is essentially
the solution of the Gan–Gross–Prasad conjecture for unitary groups [JR11,Zha14,BPLZZ21,BPCZ22].

Lemma 3.9.1. We work in the setting of Setup 3.7.1. If L( 1
2 ,Π0 ×Π1) 6= 0, then there exists
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• a standard definite Hermitian space V◦
n of dimension n over F , together with a self-dual∏

v∈Σfin
+ r(ΣΠ0

+ ∪ΣΠ1
+ )OFv -lattice Λ◦

n in V◦
n ⊗F+ AΣ+,∞∪ΣΠ0

+ ∪ΣΠ1
+

F+
, and we set V◦

n+1 = (V◦
n)] and

Λ◦
n+1 = (Λ◦

n)].
• objects Kn ∈ K(V◦

n) and (K◦
sp,K

◦
n+1) ∈ K(V◦

n)sp of the forms

K◦
n =

∏
v∈ΣΠ0

+ ∪ΣΠ1
+

(K◦
n)v ×

∏
v∈Σfin

+ r(ΣΠ0
+ ∪ΣΠ1

+ )

U(Λ◦
n)(Ov),

K◦
sp =

∏
v∈ΣΠ0

+ ∪ΣΠ1
+

(K◦
sp)v ×

∏
v∈Σfin

+ r(ΣΠ0
+ ∪ΣΠ1

+ )

U(Λ◦
n)(Ov),

K◦
n+1 =

∏
v∈ΣΠ0

+ ∪ΣΠ1
+

(K◦
n+1)v ×

∏
v∈Σfin

+ r(ΣΠ0
+ ∪ΣΠ1

+ )

U(Λ◦
n+1)(Ov),

satisfying
– K◦

sp,v ⊂ K◦
n,v for v ∈ ΣΠ0

+ ∪ ΣΠ1
+ , and

– K◦
n0,v is hyperspecial maximal subgroup of U(V◦

nα
)(Fv) for v ∈ ΣΠ0

+ ∖ ΣΠ1
+ ,

such that ∑
s∈Sh(V◦

n,K
◦
sp)

f(s) 6= 0

for some f ∈ OE
[
Sh(V◦

n0
,K◦

n0
)
]

[kerφΠ0 ]⊗OE
OE

[
Sh(V◦

n1
,K◦

n1
)
]

[kerφΠ1 ]. Here we regard f as a function
on Sh(V◦

n,K
◦
sp) via the map Sh(V◦

n,K
◦
sp)→ Sh(V◦

n,K
◦
n)× Sh(V◦

n+1,K
◦
n+1).

Proof. In view of Remark 1.1.4, this follows from the direction (1) =⇒ (2) of [BPCZ22, Theorem 1.1.5.1].
Note that since our Πn and Πn+1 are relevant representations of GLn(AF ) and GLn+1(AF ), respectively,
the Hermitian space in (2) of [BPCZ22, Theorem 1.1.5.1] is standard definite. □

Theorem 3.9.2. We work in the setting of Setup 3.7.1. Assume there is a finite place w of F lying
above a place of F+ inert in F such that (Π[

1)w is square-integrable, and assume Hypothesis 3.2.3 for each
N ∈ {n, n+ 1}. If the central critical value

L(1
2
,Π0) · L(1

2
,Π0 ×Π[

1)

does not vanish, then for all admissible finite places λ of E (with respect to (Π0,Π1)), the Bloch–Kato Selmer
group H1

f (F, ρΠ0,λ(r0)) vanishes.

Proof. The proof is a variant of that of [LTX+22, Theorem 8.2.2]. By Lemma 3.9.1, we may fix the choices
of V◦

n,V◦
n+1,Λ◦

n,Λ◦
n+1;K◦

n,K
◦
sp,K

◦
n+1 in that lemma such that∑

s∈Sh(V◦
n,K

◦
sp)

f(s) 6= 0

for some f ∈ OE
[
Sh(V◦

n0
,K◦

n0
)
]

[kerφΠ0 ]⊗OE
OE

[
Sh(V◦

n1
,K◦

n1
)
]

[kerφΠ1 ].
Let λ be an admissible finite place of E with the underlying rational prime `. We choose a GalF -stable

Oλ-lattice R0 in ρΠ0,λ(rα), unique up to homothety, with a fixed isomorphism Ξ0 : R0
∼−→ R∨

0 (1); and a
GalF -stable Oλ-lattice R[

1 in ρΠ[
1,λ

(r1), unique up to homothety, with a fixed isomorphism Ξ[1 : R[
1

∼−→ (R[
1)∨.

Set R1 := R[
1 ⊕ Oλ, with a fixed isomorphism Ξ : R1

∼−→ R∨
1 . We write R := R0 ⊗ R1 and Ξ := Ξ0 ⊗ Ξ1 :

R ∼−→ R∨(1). Define two nonnegative integers mper and mlat as follows.
(1) Let mper denote the largest nonnegative integer such that∑

s∈Sh(V◦
n,K

◦
sp)

f(s) ∈ λmperOE

for every f ∈ OE
[
Sh(V◦

n0
,K◦

n0
)
]

[kerφΠ0 ]⊗OE
OE

[
Sh(V◦

n1
,K◦

n1
)
]

[kerφΠ1 ].
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(2) We choose a standard indefinite Hermitian space Vn1 over F of rank n1, together with a fixed
isomorphism U((V◦

n1
)∞) ∼= U(V∞

n1
) of reductive groups over A∞

F+
. In particular, we obtain the

Shimura variety Sh(Vn1 ,K
◦
n1

). By Hypothesis 3.2.3, there is an isomorphism

H2r1
ét

(
Sh(Vn1 ,K

◦
n1

)F , Eλ(r1)
)
/ kerφΠ1

∼= (Rc
1 ⊗Oλ

Eλ)⊕µ1

of Eλ[GalF ]-modules for some positive integer µ1 ∈ Z+. We fix a map

H2r1
ét

(
Sh(Vn1 ,K

◦
n1

)F ,Oλ(r1)
)
/ kerφΠ1 → (Rc

1)⊕µ1

of Oλ[GalF ]-modules whose kernel and cokernel are both Oλ-torsion. Then we denote by mlat the
smallest nonnegative integer such that both the kernel and the cokernel are annihilated by λmlat .

We start to prove the theorem by contradiction, hence assume

dimEλ
H1
f (F, ρΠ0,λ(r0)) ≥ 1.

Tate a sufficiently large positive integer m which will be determined later. By Lemma 2.1.3, we may apply
[LTX+22, Proposition 2.4.6] by taking Σ to be the set of places of F lying above ΣΠ0

+ . Then we obtain
a submodule S of H1

f,R(F,R0
(m)) that is free of rank 1 over Oλ/λm−mΣ such that locw|S = 0 for every

finite place w of F lying above ΣΠ0
+ . We now apply the discussion of [LTX+22, §2.3] to the submodule

S ⊂ H1(F,R0
(m)). By (L4-1) and [LTX+22, Lemma 2.3.4], we obtain an injective map

θS : Gal(FS/Fρ(m))→ HomOλ
(S,R0

(m))

whose image generates an Oλ-submodule containing λ
r

R0
(m) HomOλ

(S,R0
(m)), which further contains

λrR0 HomOλ
(S,R0

(m)) by [LTX+22, Lemma 2.3.3] and (L3) (Here rR0
(m) and rR0 are reducibility depths

defined in [LTX+22, Definition 2.3.2, Proposition 2.3.3]). By (L4-2) and Lemma 2.3.3, we may choose an
element (γ0, γ1, ξ) in the image of (ρ(m)

Π0,λ
, ρ

(m)
Π1,λ

, ε
(m)
` )|GalFrflx,+

satisfying conditions (a-d) in Lemma 2.3.3.
In particular, the natural inclusion

(3.6)
(
R0

(m))hγ0 →
(
R(m))hγ0 ⊗hγ1

is an isomorphism of free Oλ/λm-modules of rank 1. By [LTX+22, Proposition 2.6.6] (with m0 = mΣ and
rS = 1), we may fix an (S, γ)-abundant element Ψ ∈ GS,γ (see [LTX+22, Definition 2.6.5]).

By the Chebotarev density theorem, we can choose a γ-associated place (see [LTX+22, Definition 2.6.3])
w

(m)
+ of F (m)

+ satisfying Ψw(m) = Ψ and whose underlying prime p of F+ (with its underlying rational prime
p and an isomorphism ιp : C ∼−→ Qp under which τ∞ and p correspond) is a very good inert place satisfying
(PI1)-(PI5) and

(PI6) the natural map

H2r1
ét

(
Sh(Vn1 ,K

◦
n1

)F ,Oλ(r1)
)

T
ΣΠ0

+ ∪ΣΠ1
+ ∪ΣF+ (p)

n1 ∩ kerφΠ1

→
H2r1

ét
(
Sh(Vn1 ,K

◦
n1

)F ,Oλ(r1)
)

kerφΠ1

is an isomorphism.
We can choose a quintuple T = (Φ,W0,K

p
0 , ιp, $) as in [LTX+22, §5.1] with QΦ

p = Qp2 , an octuple

V • = (Λ•
n,p,Λ•

n+1,p;K•
n,p,K

•
n+1,p,K

•
sp,p;K†

n,p,K
†
sp,p,K

†
n+1,p)

as in [LTX+22, Notation 5.10.13], and a sextuple U as in Setup 3.7.2. We are now working in the setting of
Setup 3.7.2 with

λ, Σlr,I
+ = ∅, ΣI

+ = ΣΠ0
+ ∪ΣΠ1

+ , V ◦ = (V◦
n,V◦

n+1; Λ◦
n,Λ◦

n+1;K◦
n,K

◦
sp,K

◦
n+1), m, p, T , V •, U

specified.
By the definition of mper,

(3.7) expλ
(

1Sh(V◦
n,K

◦
sp),Oλ

[
Sh(V◦

n0
,K◦

n0
)× Sh(V◦

n1
,K◦

n1
)
]
/(n0, n1)

)
≥ m−mper,

where 1Sh(V◦
n,K

◦
sp) is the pushforward of the characteristic function along the map Sh(V◦

n,K
◦
sp) →

Sh(V◦
n,K

◦
n)× Sh(V◦

n+1,K
◦
n+1).
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We claim that there exists an element c1 ∈ H1(F,R0
(m),c) such that

(3.8) expλ
(
∂plocp(c1),H1

sing(Fp,R0
(m),c)

)
≥ m−mper −mlat,

and for every finite place w of F not lying above ΣΠ0
+ ∪ {p},

(3.9) locw(c1) ∈ H1
ns(Fw,R0

(m),c).

We first prove the theorem assuming the existence of such c1. Fix a generator s1 of the submodule
S ⊂ H1

f,R0
(F,R(m)). We also identify R0

(m),c with (R0
(m))∗(1) via the polarization Ξ0. We now compute

the local Tate pairing 〈s1, c1〉w (see [LTX+22, Equation (2.2)]) for every finite place w of F .
• Suppose w is lying above ΣΠ0

+ . Then locw(s1) vanishes by our choice of S. Thus 〈s1, c1〉w = 0.
• Suppose w is lying above ΣF+(`). Then by (L2), (R0)Q is crystalline with Hodge–Tate weights in

[−r0, r0 + 1]. Thus locw(c1) is in H1
ns(Fw,R

(m)) by [LTX+22, Lemma 2.4.3(2)] and (L1). By (3.9),
[LTX+22, Lemma 2.2.7] and (L1), λmdif 〈s1, c1〉w vaniehes, where dλ = λmdif ⊂ Oλ is the different
ideal of Eλ over Q`.

• Suppose w is not lying above ΣΠ0
+ ∪ ΣF+(`) ∪ {p}. Then by (L2), R0 is unramified. Thus locw(c1)

is in H1
ns(Fw,R

(m)) by [LTX+22, Lemma 2.4.3(1)]. By (3.9) and [LTX+22, Lemma 2.2.3], 〈s1, c1〉w
vanishes.

• Suppose w is the unique place lying above p. Then

expλ
(

locw(s1),H1
ns(Fw,R0

(m))
)
≥ m−mΣ − rR0

by [LTX+22, Proposition 2.6.7]; and

expλ (〈s1, c1〉w ,Oλ/λ
m) ≥ m−mper −mlat −mΣ − rR0

by (3.8) and [Rub00, Proposition I.4.3.(ii)].
Therefore, as long as we take m such that m > mper +mlat +mΣ + rR0 +mdif , we will have a contradiction
to the relation ∑

w∈Σ∞
F

〈s1, c1〉w = 0.

The theorem is proved assuming the claim.
We now consider the claim on the existence of c1. It follows from (L5), (L6) and Proposition 3.6.3(6)

that there exists an isomorphism

Υ0 : H2r0−1
ét

(
Sh

(
V′
n0
, jn0K

∞,p
n0

K′
n0,p

)
F
,Oλ(r0)

)
/n0

∼−→
(

R0
(m),c)⊕µ0

of Oλ[GalF ]-modules, for some positive integer µ0 ∈ Z+. It follows from Lemma 3.4.7 that there exists an
isomorphism

H2r1
ét (Sh(Vn1 ,K

◦
n1

)F ,Oλ)m1
∼= H2r1

ét (Sh(V′
n1
, jn1(Kp◦

n1
)K′

n1,p)F ,Oλ)m1

of Oλ[GalF ]-modules. Thus, by (PI8) and the definition of mlat, we may fix a map

Υ1 :
H2r1

ét (Sh(V′
n1
, jn1(Kp◦

n1
)K′

n1,p)F ,Oλ(r1))

T
ΣΠ0

+ ∪ΣΠ1
+ ∪ΣF+ (p)

n1 ∩ kerφΠ1

→ (Rc
1)⊕µ1

of Oλ[GalF ]-modules whose kernel and cokernel are both annihilated by λmlat .
To continue, we adopt the notational abbreviation prior to Proposition 3.7.8. By Lemma 3.4.5 and the

Künneth formula, we obtain a map

Υ := Υ0 ⊗Υ1 : H2n−1
ét

((
Sh′

n0
×SpecF Sh′

n1

)
F
,Oλ(n)

)
/(n0, n1)→

(
R(m),c)⊕µ0µ1

of Oλ[GalF ]-modules whose kernel and cokernel are both annihilated by λmlat . Consider the class

AJ(Sh′
sp) ∈ H1 (

F,H2n−1
ét

((
Sh′

n0
×SpecF Sh′

n1

)
F
,Oλ(n)

)
/(n0, n1)

)
.
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Here Sh′
sp denotes the cycle associated to the finite morphism Sh(V′

n, jnK◦,p
sp K′

n,p)→ Sh′
n0
×SpecF Sh′

n1
. It

follows frm Proposition 3.7.8(3) and (3.7) that

(3.10) expλ
(
∂plocpAJ(Sh′

sp),H1
sing

(
Fp,H2n−1

ét
((

Sh′
n0
×SpecF Sh′

n1

)
F
,Oλ(n)

)
/(n0, n1)

))
≥ m−mper.

For each 1 ≤ i ≤ µ0 and each 1 ≤ j ≤ µ1, let

Υi,j : H2n−1
ét

((
Sh′

n0
×SpecF Sh′

n1

)
F
,Oλ(n)

)
/(n0, n1) Υ−→

(
R(m),c)⊕µ0µ1

=
(

R0
(m),c)⊕µ0µ1

⊕
(

R0 ⊗ R[
1

(m),c
)⊕µ0µ1

pri,j−−−→ R0
(m),c

denote the composition of Υ with the projection to the (i, j)-th R0
(m),c-factor, and set

ci,j := H1(F,Υi,j)(AJ(Sh′
sp)) ∈ H1(F,R0

(m),c).

Then it follows from (3.10) and (3.6) that

max
1≤i≤µ0

max
1≤j≤µ1

expλ
(
∂plocp(ci,j),H1

sing

(
Fp,R0

(m),c))
≥ m−mper −mlat.

Thus we obtain (3.8) by taking c1 = ci,j for some i, j. On the other hand, by (L6),

Hα := Hnα−1
ét

((
Sh′

nα

)
F
,Oλ(n)

)
mα

is a finite free Oλ-module for each α ∈ {0, 1}. By Lemma 3.4.5 and the Künneth formula, the following
composition map

H0 ⊗Oλ
H1

1⊗Υ1−−−→H0 ⊗Oλ
(R[,c

1 ⊕Oλ)⊕µ1
1⊗prj−−−−→H0

Υ0−−→
(

R0
(m),c)⊕µ0 pri−−→ R0

(m),c

is equal to Υi,j , where pri,prj are obvious projection maps for every 1 ≤ i ≤ µ0 and every 1 ≤ j ≤ µ1. Thus

ci,j = H1
sing(F,Υi,j)(AJ(Sh′

sp)).
Let w be a finite place of F . By Lemma 3.4.6, 2.1.3 and Hypothesis 3.2.3, H0 ⊗Oλ

H1 is pure of weight −1
at w. Thus

H1(Fw,H0 ⊗Oλ
H1)

vanishes if w is not lying above `, and
H1
f (Fw,H0 ⊗Oλ

H1) = H1
st(Fw,H0 ⊗Oλ

H1)

if w is lying above `. Then it follows from [NN16, Theorem 5.9] and the proof of [Nek00, Theorem 3.1(ii)]
that AJ(Sh′

sp) is contained in H1
f (F,H0 ⊗Oλ

H1). Hence

H1(F, (1⊗ prj) ◦ (1⊗Υ1))(AJ(Sh′
sp)) ∈ H1

f (F,H0),

by definition of Bloch–Kato Selmer groups. Therefore, for every finite place w of F not lying above ΣΠ0
+ ∪{p},

locw(ci,j) = H1(Fw,pri ◦Υ0)
(
locw

(
H1(F, (1⊗ prj) ◦ (1⊗Υ1))(AJ(Sh′

sp))
))

is contained in H1
ns(Fw,R0

(m),c) by [LTX+22, Lemma 2.4.3] and the fact that Sh′
n0

has good reduction at w.
The claim is proved. □

4. Theta correspondence

In this appendix, we review some results on automorphic representations and theta correspondence that
will be useful to us.

Let K be a local or global field of characteristic zero, and let K1 be an extension field of K with degree at
most two. Let c denote the element in Gal(K1/K) ith fixed field K. We fix a nontrivial additive character
ψ of K (resp. of K\AK) if K is local (resp. global). For an element d ∈ K×, let χd denote the quadratic
character of K (resp. of K×\A×

K) corresponding to the quadratic extension K(
√
d)/K via local (resp. global)

class field theory when K is local (resp. global).
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4.1. The groups. Suppose ε ∈ {±1} is a sign and W is a finite dimensional vector space over K1 of
dimension n equipped with a nondegenerate ε-Hermitian c-sesquilinear form

〈−,−〉W : W ×W→ K1.

We denote by G(W) the group of elements of GL(W) preserving the form 〈−,−〉W:
G(W)(R) = {g ∈ GL(R) : 〈gv, gw〉W = 〈v, w〉W}.

If K1 6= K or ε = 1, let the discriminant disc(W) and Hasse–Witt invariant ε(W) of W be normalized as
in [Pen25, §2.1]. In particular, if K1 = K and ε = 1, and W has an orthogonal basis {v1, . . . , vn} with
〈vi, vi〉 = ai ∈ K× for 1 ≤ i ≤ n, then

disc(W) = (−1)n(n−1)/2
n∏
i=1

ai.

For notational simplicity, we define disc(W) = 1 and ε(W) = 1 if K1 = K and ε = −1. Then the neutral
component of G(W) is a reductive group over K. There are several cases to consider:

(1) If K1 = K and ε = 1, then G(W) = O(W) is an orthogonal group. If dim W is odd, then G(W)
is split (resp. non-quasi-split) if ε(W) = 1 (resp. ε(W) = −1). If dim W is even, then G is split
if disc(W) = 1, ε(W) = 1, G is non-quasi-split if disc(W) = 1, ε(W) = −1, and G is quasi-split but
non-split if disc(W) 6= 1;

(2) If K1 = K and ε = −1, then G(W) = Sp(W) is a symplectic group;
(3) If K1 6= K, then G(W) = U(W) is a unitary group. G(W) is quasi-split except when dim W is even

and ε(W) = −1, in which case it is non-quasi-split.
If K1 = K and ε = 1, the determinant map on GL(W) restricts to a nontrivial quadratic character det

of G(W) = O(W).
If K1 = K and ε = −1, we will consider metaplectic group Mp(W), which is the unique nonsplit C1-

covering of G(W) = Sp(W):
1→ C1 → Mp(W)→ Sp(W)→ 1.

Here C1 is the group of norm-1 elements in C×. We can write Mp(W) = Sp(W) ⋊ C1, with multiplication
law given by

(g1, z1) · (g2, z2) = (g1g2, z1z2 · c(g1, g2))
for g1, g2 ∈ Sp(W) and z1, z2 ∈ C1, where c is the 2-cocycle of Sp(W) in {±1} given in [RR93]. Mp(W) has
a natural subgroup

S̃p(W) := Sp(W) ⋊ {±1} ⊂ Mp(W),
which is a nonsplit double cover of Sp(W). Let ωW,ψ denote the Weil representation of Mp(W) with respect
to ψ, defined via the Heisenberg group attached to the symplectic space (W, 2 〈−,−〉W). We continue to
write ωW,ψ for its restriction to S̃p(W). When K is global, we simply write ωW for the Weil representation.

These classical groups arise naturally in Howe’s theory of reductive dual pairs in the symplectic group.
We recall some basic facts about these reductive dual pairs and the splitting of the metaplectic cover over
them.

Let W be a vector space over K1 equipped with nondegenerate ε-Hermitian c-sesquilinear form
〈−,−〉W : W ×W → K1,

and let V be a vector space over K1 equipped with nondegenerate (−ε)-Hermitian c-sesquilinear form
〈−,−〉V : V × V → K1.

We distinguish the following cases:
• (Case U) K1 6= K, W is Hermitian and V is skew-Hermitian, or W is skew-Hermitian and V is

Hermitian;
• (Case SO1) K1 = K, W is symplectic and V is orthogonal with dimV odd;
• (Case O1S) K1 = K, W is orthogonal with dimV odd and V is symplectic;
• (Case O2S) K1 = K, W is orthogonal with dimV even and V is symplectic;
• (Case SO2) K1 = K, W is symplectic and V is orthogonal with dimV even.
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We collectively refer to Cases O1S and O2S as Case OS, and refer to Cases SO1 and SO2 as Case SO.
Let G and H be algebraic groups over K defined by

G =

{
G(W ) in Cases U, OS, SO2
S̃p(W ) in Case SO1,

H =

{
G(V ) in Cases U, O2S, SO
S̃p(V ) in Case O1S

.

Let W = W ⊗K1 V , regarded as a vector space over K and equipped with a symplectic form
trK1/K (〈−,−〉W ⊗K1 〈−,−〉V ) .

Then (G(W ),H(V )) is a reductive dual pair in the symplectic group Sp(W), and there is a natural map
ι : G×H → G(W )×H(V )→ Sp(W).

4.2. Local Gan–Gross–Prasad conjecture. In this subsection, we assume that K is a non-Archimedean
local field. We will focus on the group G. Fix a nontrivial additive character ψ of K, and set m := dim(W ).

If G is isomorphic to a metaplectic S̃p2n(K), then we say an irreducible admissible representation π of
G(K) is genuine if the nontrivial element in ker

(
S̃p2n(K)→ Sp2n

)
(K) acts by −1. For simplicity, if G is

not metaplectic, then every irreducible admissible representation of G(K) is called genuine.
Let Π(G) denote the set of all irreducible admissible genuine representations of G(K). Denote by Φ(G)

the set of equivalence classes of representations φ of WK1 × SL2 of dimension

m− 1 in Case U
m in Case SO1
m+ 1 in Case SO2
m− 1 in Case O1S
m in Case O2S

which are 
conjugate self-dual of sign (−1)m−1 in Case U
self-dual of sign 1 such that det(φ) = χW in Case O2S
self-dual of sign 1 such that det(φ) = 1 in Case SO1
self-dual of sign − ε such that det(φ) = 1 otherwise

Elements of Φ(G) are called L-parameters for G. We denote by Φtemp(G) the subset of equivalence classes
of tempered L-parameters, that is, the set of φ ∈ Φ(G) such that φ(WE) is precompact.

Recall that there is a canonical local Langlands reciprocity map (depending on ψ in the metaplectic case)
recW : Π(G)→ Φ(G);

see [GS12, Art13, KMSW14, AG17, CZ21, Ish24]. For any π ∈ Π(G), π is tempered if and only if rec(π) is
tempered. For φ ∈ Φ(G), we denote by Πφ the inverse image of φ, called the L-packet of φ on G.

We now state the tempered Bessel case of the local Gan–Gross–Prasad conjecture.

Theorem 4.2.1.
(1) Suppose we are in Case U. Set V] := V ⊕ L(−1)dim V where L(−1)dim V is the Hermitian space of

dimension 1 and discriminant (−1)dimV . For any φ ∈ Φtemp(U(V )) and φ] ∈ Φtemp(U(V])), there
exists
• a unique pair (V •, V •

] ) in which V • is a Hermitian space over K1 with dimV • = dimV and
V •
] := V • ⊕ L(−1)dim V ; and

• a pair of irreducible admissible representations (π, π]) ∈ Πφ(U(V •))×Πφ]
(U(V •

] )),
satisfying

HomU(V •)(π ⊗ π],C) 6= 0.
(2) Suppose we are in Case SO. Set V] := V ⊕ L(−1)dim V +1 where L(−1)dim V +1 is the quadratic space

of dimension 1 and discriminant (−1)dimV+1.Let V0 (resp. V1) denote the unique even (resp. odd)
dimensional element in the set {V, V]}. For φ0 ∈ Φtemp(O(V0)) and φ1 ∈ Φtemp(O(V1)), there exist
• a unique pair (V •

0 , V
•

1 ) in which V •
0 is a quadratic space with dim(V •

0 ) = dim(V0) and disc(V •
0 ) =

disc(V0) and V •
1 = V •

0 ⊕ L(−1)dim V +1 ; and
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• a pair of irreducible admissible representations (π0, π1) ∈ Πφ0(O(V •
0 ))×Πφ1(O(V •

1 )),
satisfying

HomO(V •
0 )(π0 ⊗ π1,C) 6= 0.

Proof. Case U is established by Beuzart-Plessis [BP14,BP15,BP16]. Case SO is established in [AG17, The-
orem 5.6], extending the Gross–Prasad conjecture in the special orthogonal case established by Waldspurger
[Wal10, Wal12, Wal12b, Wal12c]. Note that the assumptions on local Langlands correspondence for orthog-
onal groups in [AG17, Theorem 5.6] are established in [Art13, Ish24] for odd special orthogonal groups and
in [CZ21, Theorem 4.4] for even orthogonal groups. □

4.3. Local theta lifts and Prasad’s conjectures. In this subsection, we assume that K is a local field.
We fix a nontrivial additive character ψ of K and a pair of characters χ = (χW , χV ) of K×

1 such that
(1) In Case U, χW |K× = χdimW

K1
and χV |K× = χdimV

K1
;

(2) In Case SO, χW is trivial and χV = χdisc(V ).
(3) In Case OS, χW = χdisc(W ) and χV is trivial.

Note that χc
W = χ−1

W and χc
V = χ−1

V .
Using ψ and χ, the natural map

ιW,V : G×H → Sp(W)
can be lifted to a homomorphism

ι̃W,V,χ,ψ → Mp(W);
see [Kud94] and [HKS96, §1].

Let ωW,ψ denote the Weil representation of Mp(W) with respect to ψ. Using this splitting ι̃W,V,χ,ψ, we
obtain a representation

ωW,V,ψ,χ := ωW,ψ ◦ ι̃W,V,ψ,χ
of G×H, called the Weil representation of G×H (with respect to the auxiliary data above).

For any irreducible admissible genuine representation π of G(K), the maximal π-isotypic quotient of
ωW,V,ψ,χ is of the form

π ⊠ ΘW,V,ψ,χ(π),
where ΘW,V,ψ,χ(π) is either zero or a finite length smooth representation of H(K) [Kud86]. Let θW,V,ψ,χ(π)
denote the maximal semisimple quotient of ΘW,V,ψ,χ(π). We have the following standard properties.

Proposition 4.3.1.
(1) θW,V,ψ,χ(π) is either zero or irreducible.
(2) If K is non-Archimedean and π is supercuspidal, then ΘW,V,ψ,χ(π) is either zero or irreducible.
(3) If K = R and at least one of G and H is compact, then ΘW,V,ψ,χ(π) is either zero or irreducible.

Proof. The first two follow from the Howe duality conjecture [Kud86,MVW87,How89b,Wal90,GT16]. The
third one is due to Howe [How89]. □

The following theorem is known as the local conservation relation (also called the local theta dichotomy);
see [HKS96,KR05,Mín12,GS12,SZ15].

Theorem 4.3.2. Suppose K is non-Archimedean and we are in Case U or SO. If V ′ is another nondegen-
erate (−ε)-Hermitian vector space over K1 with

dimV + dimV ′ = 2(dimW + 2− [K1 : K]), ε(V ′) 6= ε(V )
and moreover disc(V ′) = disc(V ) in Case SO, then for any irreducible admissible genuine representation π
of G(K), exactly one of the two theta lifts θW,V,ψ,χ(π) and θW,V ′,ψ,χ(π) is nonzero.

To conclude this subsection, we recall Prasad’s conjectures relating local theta correspondence and local
Langlands correspondence.

Theorem 4.3.3. Suppose K is non-Archimedean and π is an irreducible admissible representation of G.
(1) Suppose we are in Case U and dimV = dimW . Then there is a unique (−ε)-Hermitian space V •

over K1 with dim(V •) = dim(V ) such that θW,V •,ψ,χ(π) is nonzero. Moreover,

recV •(θW,V •,ψ,χ(π)) = recW (π)⊗ χ−1
V χW .
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(2) Suppose we are in Case U and dimV = dimW + 1. If θW,V •,ψ,χ(π) is nonzero, then

recV •(θW,V •,ψ,χ(π)) = (recW (π)⊗ χ−1
V χW )⊕ χW .

(3) Suppose we are in Case U and dimV = dimW − 1. If recW (π) contains χV as a subrepresenta-
tion, then there is a unique (−ε)-Hermitian space V • over K1 with dim(V •) = dim(V ) such that
θW,V •,ψ,χ(π) is nonzero. Moreover,

recW (π) = (recV •(θW,V,ψ,χ(π))⊗ χ−1
W χV )⊕ χV

(4) Suppose we are in Case SO1 and dimV = dimW + 1.Then there exists a unique quadratic space
V • over K with dim(V •) = dim(V ) and disc(V •) = disc(V ) such that θW,V •,ψ,χ(π) is nonzero.
Moreover,

recV •(θW,V •,ψ,χ(π)) = recW (π)⊗ χV .
(5) Suppose we are in Case O1S and dimV = dimW − 1.Then there exists a unique element ε ∈ {±1}

such that θW,V,ψ,χ(π ⊗ det(1−ε)/2) is nonzero. Moreover,

recV (θW,V,ψ,χ(π ⊗ det(1−ε)/2)) = recW (π)⊗ χW .
(6) Suppose we are in Case SO2 and dimV = dimW + 2. If θW,V,ψ,χ(π) is nonzero, then

recV (θW,V,ψ,χ(π)) = (recW (π)⊗ χV )⊕ 1.
Here 1 is the trivial representation of WK .

(7) Suppose we are in Case O2S and dimV = dimW−2. If recW (π) contains the trivial representation 1
as a subrepresentation, then there exists a unique element ε ∈ {±1} such that θW,V,ψ,χ(π⊗det(1−ε)/2)
is nonzero. Moreover,

recW (π) = (recV (θW,V,ψ,χ(π ⊗ det(1−ε)/2))⊗ χW )⊕ 1.

Proof. (4)-(6) are established by Gan–Ichino [GI16]. (4-5) are established by Gan-Savin [GS12] (cf. [AG17,
Theorem B.8]). (6)-(7) are established by Atobe–Gan [AG17, Theorem 4.4]. □

4.4. Global theta lifts. In this subsection, we assume that K is a global field, and set F := K,F1 := K1.
We fix a conjugate self-dual automorphic character µ of AF1 that satisfying µu(z) = z/

√
zz for every infinite

place u of F1 and z ∈ C×.
If G (resp. H) is isomorphic to a metaplectic group S̃p2n, then the covering S̃p2n(Fv)→ Sp2n(Fv) splits

over the hyperspecial maximal compact subgroup Kv for all but finitely many finite places v of F . So we
may regard Kv as a compact open subgroup of S̃p2n(Fv). In this case, the restricted tensor product∏

v

′G(Fv)

with respect to the family {Kv}v contains ⊕vµ2 as a central subgroup. Denote by G(AF ) (resp. H(AF ))
the quotient of the above restricted tensor product by the central subgroup

{(zv) ∈
⊕

v
µ2 :

∏
v

zv = 1}.

If G (resp. H) is not isomorphic to a metaplectic group, we simply denote by G(AF ) (resp. H(AF )) the
adelic points of G (resp. H).

Similarly, for all but finitely many finite places v of F , the metaplectic covering Mp(Wv)→ Sp(Wv) splits
over the hyperspecial maximal compact subgroup Kv. So we may regard Kv as an open compact subgroup
of Mp(Wv). Then we define Mp(W)(AF ) as the quotient of the restricted tensor product∏

v

′ Mp(Wv)

by the central subgroup

{(zv) ∈
∏
v

C1 : zv = 1 for all but finitely many v,
∏
v

zv = 1}.

The covering Mp(W)(AF )→ Sp(W)(AF ) canonically splits over the subgroup Sp(W)(F ). So we can regard
Sp(W)(F ) as a subgroup of Mp(W)(AF ).
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We fix a convenient set of parameters for the theta correspondence: a nontrivial additive character ψ of
F\AF and a pair of automorphic characters χ = (χW , χV ) of K1\A×

K1
such that

(1) In Case U, χW = µ(1+(−1)dim W )/2 and χV = χ(1+(−1)dim V )/2;
(2) In Case SO, χW is trivial and χV = χdisc(V );
(3) In Case OS, χW = χdisc(W ) and χV is trivial.

Note that χc
W = χ−1

W and χc
V = χ−1

V . The pair (χ, ψ) fixes a lifting

ι̃W,V :=
⊗
v

′ι̃Wv,Vv,ψv,χv
: G(AF )×H(AF )→ Mp(W)(AF )

of
ιW,V :=

⊗
v

′ιWv,Vv : G(AF )×H(AF )→ Sp(W)(AF ).

The global Weil representation ωW := ⊗′
vωWv,ψv

of∏
v

′ Mp(Wv)

factors through a representation ωW of Mp(W)(AF ). Using the lifting ι̃W,V , we obtain a representation
ωW,V := ωW ◦ ι̃W,V

of G(AF ) ×H(AF ). If W is skew-Hermitian, we pair it with the 1-dimensional Hermitian space V ′ = F1e
with ‖e‖ = 1, and let ωW denote the restriction of ωW,V ′ to G(AF ), called the Weil representation of G(AF ).
For each place v of F , we denote by ωWv,ψv the local component of ωW , which is a representation of G(Fv).

Let L be a Lagrangian subspace of W. Then the Weil representation ωW,V is realized on the space
of Schwartz functions S(L(AF )). For each Schwartz function φ ∈ S(L(AF )), define a theta function on
G(AF )×H(AF ) by

θW,V (g, h;φ) :=
∑

x∈L(F )

ωW,V (g, h)φ(x), (g, h) ∈ G(AF )×H(AF ).

Let π ⊂ A0(G(AF )) be a genuine cuspidal automorphic representation of G(AF ). Then the theta lift θW,V (π)
is defined to be the span of functions on H(AF ) of the form

θW,V (ϕ;φ) : h 7→
∫
G(F )\G(AF )

ϕ(g)θW,V (g, h;φ)dg,

for ϕ ∈ π and φ ∈ S(L(AF )). Here the measure dg denotes the Tamagawa measure on G(F )\G(AF ) if G
is not metaplectic, and an arbitrary fixed Haar measure otherwise. Since theta functions are of moderate
growth and ϕ is rapidly decreasing, these integrals converge and define automorphic forms on H(AF ).

We recall the following compatibility property between global and local theta lifts.

Proposition 4.4.1. Let π ⊂ A0(G(AF )) be a genuine cuspidal automorphic representation of G(AF ).
If σ := θW,V (π) is contained in the space of square-integrable automorphic forms on H(AF ), then it is
irreducible and isomorphic to the restricted tensor product ⊗′

vθWv,Vv,ψv,χv (πv). If moreover σ is cuspidal,
then π = θV,W (σ).

Proof. The first assertion follows from [KR94, Corollary 7.1.3]. The second follows from [GRS93, Proposition
1.2]. □

To end this section, we discuss relation between global theta correspondence and functorial lifts. We
first recall the notion of Arthur parameters attached to discrete automorphic representations of orthogonal
groups.

Definition 4.4.2. Let π be an automorphic representation of H(AF ) contained in the space of square-
integrable functions on H(AF ). There is a standard L-homomorphism

ξ : LH → L
(
ResF1/F (GLN )F1

)
, N = dimV +


0 In Cases U or O1S or SO2
1 In Case O2S
−1 In Case SO1
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as defined in [Mok15, §2.1] in Case U (the standard base change embedding) and in [Art13, §1.2] in Case SO
or OS. For each finite place v of F such that Hv is unramified, ξ induces a map ξ∗ from the set of isomorphism
classes of irreducible unramified representations of SO(V)(Fv) to that of GLN (F1 ⊗F Fv). A functorial lift
of π is defined to be an automorphic representation Π of GLN (AF1) that is a finite isobaric sum of discrete
automorphic representations such that Πv is isomorphic to FL(πv) for all but finitely many finite places v of
F such that πv is unramified. A functorial lift FL(π) exists in Cases O2S, U, O1S, SO1, and SO2; see [Art13],
[KMSW14, Theorem 1.7.1], [GI18, Theorem 1.1], [Ish24, Theorem 3.16], [CZ24, Theorem 2.1], respectively.
By strong multiplicity one for GLN (AF1) [PS79], this functorial lift is unique up to isomorphism, denoted
by FL(π), and we will also call it the Arthur parameter of π. To align with the literature, in Case U we also
refer to FL(π) as the base change of π and write BC(π).

Proposition 4.4.3. Suppose we are in Cases U or SO. Let π ⊂ A0(G(AF )) be a cuspidal automorphic rep-
resentation of G(AF ) such that θW,V (π) is an (irreducible) cuspidal automorphic representation of H(AF ).
Then

FL(θW,V (π)) =


BC(π) dimV = dimW in Case U
(BC(π)⊗ µ−1) ⊞ µ(1+(−1)dim W )/2 dimV = dimW + 1 in Case U
FL(π) dimV = dimW + 1 in Case SO1
(FL(π)⊗ χV ) ⊞ 1 dimV = dimW + 2 in Case SO2

.

Proof. In Case U, this is [Xue14, Proposition 8.14]. In Case SO, by strong multiplicity one theorem [JS81],
it suffices to compare their localizations at finite places v of F where H is split. Thus the assertion follows
from Proposition 4.3.3. □

We recall the following criterion of nonvanishing of global theta lifts.

Theorem 4.4.4. Suppose we are in Case U or SO. Suppose dimW = dimV + 1 − [F1 : F ] and π ⊂
A0(G(AF )) is a genuine cuspidal automorphic representation of G(AF ). Assume that FL(π)v is tempered
for every finite place v of F . If θW,V(π) is contained in A0(U(V)(AF )), then it is nonzero if and only if

• for all places v of F , the local theta lift θWv,Vv,ψv,χv (πv) is nonzero, and
• L(FL(π)⊗ χV ; 1

2 ) is nonzero.

Proof. This follows from [Yam14, Theorem 10.1]. In fact, it is not clear whether the standard L-function
L(s, π) for π constructed by the doubling method in [Yam14] and the standard L-function of FL(π) coincide.
Nevertheless, it follows from Yamana’s computation at unramified places [Yam14, Proposition 7.1] that their
partial L-functions are equal. It follows from the temperedness assumption and [Yam14, Lemma 7.2] that

ords= 1
2
L(s, π ⊗ χV ) = ords= 1

2
L(s,FL(π)⊗ χV ).

Now [Yam14, Theorem 10.1] applies. □

5. Seesaw and proof of main theorems

In this section, we use seesaw identities (both local and global) to prove the main theorems. Let r be a
positive integer.

5.1. The conjugate self-dual case. Let F be a totally imaginary quadratic extension of a totally real
number field F+. Let V2r be a Hermitian space of dimension 2r over F , and V1 be a Hermitian space of
dimension 1 over F equipped with an element e ∈ V1 satisfying ‖e‖ = 1. Let W2r be a skew-Hermitian
space of dimension 2r over F . Set V2r+1 := V2r⊕V1. Let ι : U(V2r) ⊂ U(V2r+1) be the natural inclusion.
We fix a nontrivial additive character ψ of F+\AF+ , and use notations defined in §4.

Consider the inclusion
U(V2r)×U(V1) ⊂ U(V2r+1)

and the diagonal embedding
U(W2r) ⊂ U(W2r)×U(W2r).

(U(W2r),U(V2r+1)) and
(U(W2r)×U(W2r),U(V2r)×U(V1))
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are reductive dual pairs. In other words, there is a seesaw diagram:

(5.1)

U(W2r)×U(W2r) U(V2r+1)

U(W2r) U(V2r)×U(V1)

.

We fix a conjugate self-dual automorphic character µ of AF satisfying µu(z) = z/
√
zz for z ∈ C× at every

infinite place u of F . Then we use the pair (ψ, χ) to define the (both local and global) theta correspondences
between the pairs

(U(W2r),U(V2r)), (U(W2r),U(V1)), (U(W2r),U(V2r+1))
as defined in §4.4. We record the following local seesaw identity attached to the seesaw diagram (5.1).

Lemma 5.1.1. Let p be a finite place of F+ that is inert in F . For irreducible admissible representations
π0 of U(V2r)(F+,v) and σ1 of U(W2r)(F+,v), there is a canonical isomorphism

HomU(W2r)(F+,v)(ΘV2r,W2r
(π0)⊗ ωW2r

, π)
∼= HomU(V2r)(F+,v)(ΘW2r,V2r+1(σ1), π0).

Proof. This is standard. □

We introduce the unitary Gan–Gross–Prasad periods and the Fourier–Jacobi periods.

Definition 5.1.2. Let π0 ⊂ A0(U(V2r)(AF+)) and π1 ⊂ A0(U(V2r+1)(AF+)) be cuspidal automorphic
representations and f0 ∈ π0 and f1 ∈ π1 be cusp forms. We define the unitary Gan–Gross–Prasad period

PGGP(f0, f1) :=
∫

U(V2r)(F+)\U(V2r)(AF+ )
f0(h)f1(ι(h))dh.

Here the measure dh is the Tamagawa measure on U(V2r)(AF+). This integral is absolutely convergent
since f0 and f1 are rapidly decreasing.

We set

W2r,1 := W2r ⊗F+ V1, W2r,2r := W2r ⊗F+ V2r, W2r,2r+1 := W2r+1 ⊗F+ V2r+1.

Then they are all symplectic spaces over F+ as defined in §4.4. Fix Lagrangian subspaces

L2r,1 ⊂W2r,1, L2r,2r ⊂W2r,2r,

then L2r,2r := L2r,2r ⊕ L2r,1 is a Lagrangian subspace of W2r,2r+1. For each n ∈ {1, 2r, 2r+ 1}, let ωW2r,Vn

denote the Weil representation, which can realized on the space of Schwartz functions S(L2r,n). Then

ωW2r,V2r+1 = ωW2r,V2r
⊗̂ωW2r

.

In particular, if φ2r,2r+1 = φ2r,2r ⊗ φ2r,1 ∈ S(L2r,2r(AF+))⊗ S(L2r,1(AF+)), then

θW2r,V2r+1(g, ι(h);φ2r,2r+1) = θW2r,V2r
(g, h;φ2r,2r)θW2r,V1(g, φ2r,1)

for every (g, h) ∈ U(W2r)(AF+)×U(V2r)(AF+).

Definition 5.1.3. Let σ0, σ1 ⊂ A0(U(W2r)(AF+)) be two cuspidal automorphic representations. Let ϕ0 ∈
σ0, ϕ1 ∈ σ1 be automorphic forms and φ ∈ S(L2r,1(AF+)) be a Schwartz function. We define the Fourier–
Jacobi period

FJ (ϕ0, ϕ1;φ) :=
∫

U(W2r)(F+)\U(W2r)(AF+ )
ϕ0(g)ϕ1(g)θW2r,V1(g;φ)dg.

Here the measure dg is the Tamagawa measure on U(W2r)(AF+). This integral is absolutely convergent
since ϕ0 and ϕ1 are rapidly decreasing and theta functions are of moderate growth.

We will use the following global seesaw identity.
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Lemma 5.1.4. Let σ1 ⊂ A0(U(W2r)(AF+)) and π0 ⊂ A0(U(V2r)(AF+)) be cuspidal automorphic repre-
sentations such that

σ0 = θV2r,W2r (π0)
is a cuspidal automorphic representation of U(W2r)(AF ). Let ϕ1 ∈ σ1 and f0 ∈ π0 be cusp forms and
φ2r,1 ∈ S(L2r,1(AF+)), φ2r,2r ∈ S(L2r,2r(AF+)) be Schwartz functions. Then

FJ
(
θV2r,W2r

(f0;φ2r,2r), ϕ1;φ2r,1
)

= PGGP
(
f0, θW2r,V2r+1(ϕ1;φ2r,2r ⊗ φ2r,1)

)
.

Proof. To save space, we write [U(V2r)] and [U(W2r)] for
U(V2r)(F+)\U(V2r)(AF+) and U(W2r)(F+)\U(W2r)(AF+),

respectively. Then
FJ

(
θV2r,W2r

(f0;φ2r,2r), ϕ1;φ2r,1
)

=
∫

[U(W2r)]
ϕ1(g)θW2r,V1(g;φ2r,1)

∫
[U(V2r)]

f0(h)θW2r,V2r
(g, h;φ2r,2r)dhdg

=
∫

[U(V2r)]
f0(h)

∫
[U(W2r)]

ϕ1(g)θW2r,V1(g;φ2r,1)θW2r,V2r (g, h;φ2r,2r)dgdh

=
∫

[U(V2r)]
f0(h)

∫
[U(W2r)]

ϕ1(g)θW2r,V2r+1(g, ι(h);φ2r,2r ⊗ φ2r,1)dgdh

= PGGP
(
f0, θW2r,V2r+1(ϕ1;φ2r,2r ⊗ φ2r,1)

)
□

We now explain how to deduce Theorem B from Theorem D. The key ingredient is the following Burger–
Sarnak type principle for Fourier–Jacobi periods on the pair of unitary groups (U(W2r),U(W2r)), in the
spirit of [BS91,HL98,Pra07,Zha14]. We first fix notation. For every infinite place u of F , U(W2r)(F+,u) has
a maximal compact subgroup Ku

∼= U(r) × U(r). We fix such an isomorphism and denote by detm1
1 detm2

the character of Ku defined by
(k1, k2) 7→ det(k1)m1 det(k2)m2 .

Proposition 5.1.5. Assume that W2r has signature (r, r) at every infinite place. Suppose that
(1) Σ is a finite set of places of F+ containing at least one finite place;
(2) σ0 is an automorphic representation of U(W2r)(AF+); and
(3) ⊗v∈Στv is an irreducible admissible representation of

∏
v∈Σ U(W2r)(F+,v) satisfying

(a) for every v ∈ Σ, the space HomU(W2r)(F+,v)(σ0,v ⊗ ωW2r,v,ψv ⊗ τv,C) is nonzero;
(b) for every finite place v ∈ Σ, τv is compactly induced from an irreducible admissible representation

νv of ZvKv, where Kv is a compact open subgroup of U(W2r)(F+,v) and Zv is the center of
U(W2r)(F+,v); and

(c) for every infinite place u ∈ Σ, τ∨
u is a holomorphic discrete series that is a generalized

Verma module in the sense of [Gar05]. Moreover, if the lowest Ku-type of τ∨
u is the character

detm1
1 det−m2

2 for some positive integers m1,m2, then σ0,u has lowest Ku-type detm1−1
1 det−m2

2
with multiplicity one.

Then there exists a cuspidal automorphic representation σ1 of U(W2r)(AF+) satisfying
(1) for every place v ∈ Σ, σ1,v is isomorphic to τv; and
(2) there exist automorphic forms ϕ0 ∈ σ0, ϕ1 ∈ σ1 and a Schwartz function φ ∈ S(L2r,1(AF )) such that

FL(ϕ0, ϕ1;φ) 6= 0.

Proof. The proof is a variant of that of [Zha14, Proposition 2.14]. We write G = U(W2r). It follows from
the hypothesis that τu is induced from its lowest K-type νu. We consider the restriction of σ0,v ⊗ ωψv,χv

to Kv for each v ∈ Σ. By the assumption and Frobenius reciprocity, ν∨|Kv
is a quotient representation of

σ0,v ⊗ ωψv,χv
|Kv

. Because Kv is compact, there exist an automorphic function ϕ0 ∈ σ0 on G(AF+) and a
Schwartz function φ ∈ S(L2r,1(AF+)) such that the

∏
v∈Σ Kv-translates of f := ϕ0 · θW2r,V1(−;φ) span a

C-vector space that is isomorphic to ⊗v∈Σν
∨|Kv

as representations of
∏
v∈Σ Kv. We can further assume that
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f(1) 6= 0. Indeed, G(AΣ
F+

) acts on the set of all such functions. If they all vanish at the identity element,
then they would be identically zero by the weak approximation theorem according to which G(F+) is dense
in G(AF+,Σ).

The group
∏
v∈Σ Zv acts on f by the character

∏
v∈Σ ω

−1
νv

, where ωνv is the central character of νv
for every v ∈ Σ. Thus the

∏
v∈Σ ZvKv-translates of f generates a C-vector space that is isomorphic to∏

v∈Σ ν
−1
v as a representation of

∏
v∈Σ ZvKv. As a result, if v ∈ Σ is finite, then the G(F+,v)-translates of f

generates a C-vector space that is isomorphic to IndG(F+,v)
ZvKv

ν−1
v as representations of G(F+,v). On the other

hand, if u ∈ Σ is infinite, then it follows from the relation between the lowest Ku-type of τ∨
u and σ0,u that

U(gu) ⋊Ku-translates of f generate a C-vector space that is isomorphic to τ∨
u as a (gu,Ku)-module (Here

U(gu) is the universal enveloping algebra over C of the Lie algebra of G(F+,u)).
Since cusp forms are rapidly decreasing, f is contained in L2(G(F+)\G(AF+)). Because the space of

automorphic forms are L2-dense, one can find an automorphic form ϕ1 on G(AF+) such that∫
G(F+)\G(AF+ )

f(g)ϕ1(g)dg

is absolutely convergent and nonzero. Using Hecke projectors and properties of f , we can further assume that
Hecke translates of ϕ1 generate a cuspidal automorphic representation σ1 of G(AF+) satisfying σ1,v ∼= τv
for every v ∈ Σ. Thus FL(ϕ0, ϕ1;φ) is nonzero.

The theorem is proved. □

We define the notion of admissible places for the coefficient field appearing in Theorem B.

Definition 5.1.6. Let Π be a relevant automorphic representation of GL2r(AF ) and E be a strong coefficient
field of Π (see Definition 3.1.6). We say that a finite place λ of Σfin

E , with underlying prime `, is an admissible
place (with respect to Π) if the following hold:

(Λ1) ` ≥ 4r + 2.
(Λ2) ΣΠ

+ does not contain places over `.
(Λ3) The residual representation ρΠ0,λ is absolutely irreducible. Fix a GalF -stable Oλ-lattice R ⊂ ρΠ,λ(r)

(which is unique up to homothety), together with an isomorphism Ξ : R ∼−→ R∨(1).
(Λ4-1) Either one of the following two assumptions holds:

(a) The image of GalF in GL(R) contains a nontrivial scalar element.
(b) R is a semisimple κλ[GalF ]-module and Homκλ[GalF ](End(R),R) = 0.

(Λ4-2) (GI1
F ′,P,R) from Lemma 2.3.4 holds for F ′ = Frflx,+ and P(T ) = T 2 − 1.

(Λ5) The homomorphism ρΠ,λ,+ is rigid for (ΣΠ
+,∅) (see Definition 3.6.1), and ρΠ,λ|GalF (µ`) is absolutely

irreducible.
(Λ6) The composite homomorphism TΣΠ

+
2r

φΠ−−→ OE → κλ is cohomologically generic (see Definition 3.1.9
and Definition 3.2.5).

Lemma 5.1.7. Let Π be a relevant automorphic representation of GL2r(AF ) and E be a strong coefficient
field of Π (see Definition 3.1.6). Suppose F+ 6= Q and one of the following two assumptions holds:

(1) E = Q and there exists a modular elliptic curve A over F+ with no complex multiplication over F
satisfying ρΠ,` ∼= Sym2r−1 H1

ét(AF ,Q`)|GalF
for every rational prime `.

(2) There exists a finite place w of F such that Πw is supercuspidal; and a good place p of F (see
Definition 3.3.3) such that Πp is a Steinberg representation.

Then all but finitely many finite places of E are admissible (with respect to Π).

Proof. We first consider case (1): By [Ser72, Théorème 6] and [Lom15], for sufficiently large rational prime
`, the homomorphism

ρA,`|Frflx : GalFrflx → GL
(
H1

ét
(
AF ,F`

))
is surjective; let ` be such a rational prime. We fix an isomorphism H1

ét
(
AF ,F`

) ∼= F⊕2
` such that ρA,`(c) is

given by the matrix [
1

1

]
∈ GL2(F`).

40



We need to check that every condition in Definition 5.1.6 excludes only finitely many rational primes `.
For (Λ1-3) and (Λ4-1), this is clear.
For (Λ4-2), we suppose ` > 24r−2, so {

2±1, 2±3, . . . , 2±(2r−1)
}

consists of distinct elements in F`, and does not contain −2 ∈ F`. We take an element g ∈ GalFrflz whose
image under ρA,` is [

2
1

]
∈ GL2(F`).

Thus (GI1
F ′,P,R) from Lemma 2.3.4 holds for F ′ = Frflx,+ and P(T ) = T 2 − 1 holds by taking the image of

gc under (ρΠ,`, ε`).
For (Λ5), by [LTX+24, Corollary 4.2], the condition that ρΠ0,λ,+ is rigid for (Σmin

+ ,∅) excludes only
finitely many finite places λ of E. The second condition is clearly satisfied.

For (Λ6), this follows from the same reasoning as in the proof of Lemma 3.8.2.
We now consider case (2): We need to check that every condition in Definition 5.1.6 excludes only finitely

many rational primes `.
For (Λ1) and (Λ2), this is clear.
For (Λ3), this follows from [LTX+24, Theorem 4.5.(1)].
For (Λ4-1), this follows by the same reasoning as in the proof of [LTX+24, Lemma 8.1.4].
For (Λ4-2), note that, for all but finitely many finite place λ of E strongly disjoint from p,

{‖p‖±1 (mod λ), ‖p‖±3 (mod λ), . . . , ‖p‖2r−1 (mod λ)}

consists of distinct elements and does not contain −1. For every such λ that also satisfies (Λ3), the condition
(GI1

R,F ′,P) from Lemma 2.3.4 holds for F ′ = Frflx,+ and P(T ) = T 2−1, by taking the element (ρR,λ, ε`)(φp).
For (Λ5-2), this follows from [LTX+24, Theorem 4.8].
For (Λ6), this follows from the same reasoning as in the proof of Lemma 3.8.2.
Note that the primes that are excluded can be effectively bounded. □

We now prove Theorem B using the Burger–Sarnak type principle (see Proposition 5.1.5) and seesaw
identities.

Theorem 5.1.8. Let Π0 be a relevant automorphic representation of GL2r(AF ) and E be a strong coefficient
field of Π0 (see Definition 3.1.6). If L( 1

2 ,Π0) 6= 0, then for every admissible place λ of E with respect to Π0,
the Bloch–Kato Selmer group H1

f (F, ρΠ0,λ(n)) vanishes.

Proof. Let λ be an admissible place with underlying rational prime `. We fix an isomorphism ι` : C ∼−→ Q`
that induces the place λ. By (Λ4-2) and the Chebotarev density theorem, we can find a good inert place p
of F+ (see Definition 3.3.3) satisfying

• the underlying prime of p is larger than max(`, 2r + 1); and
• ρΠ,λ(φp) has generalized eigenvalues {‖p‖ · α±1

0,1, . . . , ‖p‖ · α
±1
0,r} ⊂ κλ

× with α0,1 = ‖p‖ and α0,i /∈
{‖p‖±1 (mod λ)} for every 2 ≤ i ≤ r.

We take a Π0,p-avoiding good representation Π[,′
1,p of GL2r(Fp) with respect to ι` (see Definition A.1.2)

satisfying
• there exists a lift F ∈WFp

of the arithmetic Frobenius element such that the eigenvalues {α1, . . . , a2r}
of ι` rec2r(Π[,′

1,p)(F 2) are `-adic units; and
•

‖p‖2
/∈ {αiα−1

j |1 ≤ i 6= j ≤ 2r} ∪ {αi|1 ≤ i ≤ 2r} ⊂ F`.
holds.

Such a representation exists by Lemma A.1.3.
We fix another prime q of F+ inert in F such that 2r` divides ‖q‖2 − 1. By Lemma A.1.1, we can take a

conjugate-orthogonal supercuspidal representation Π[,′
1,q of GL2r(Fq) whose associated Galois representation

ι` rec2r(Π[,′
1,q) : WFq

→ GL2r(Q`)
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is residually absolutely irreducible.
In this paragraph, let v denote a place in {p, q}. By the local Gan–Gross–Prasad conjecture (see Theo-

rem 4.2.1(1)), there exists a Hermitian space V ′
v of dimension 2r over Fv and irreducible admissible repre-

sentations π′
0,v and π′

1,v of U(V ′
v) and U(V ′

v,]), respectively, satisfying
(1) BC(π′

0,v) = Π0,v and BC(π′
1,v) = Π[,′

1,v ⊞ 1, where 1 is the trivial representation of GL1(Fv); and
(2) HomU(V ′

v)
(
π′

1,v|U(V ′
v) ⊗ π′

0,v,C
)
6= 0.

In particular, π′
1,v is supercuspidal by [MR18, Corollaire 3.5]. By Prasad’s conjecture (see Theorem 4.3.3(3)),

there exist a unique skew-Hermitian space W ′
v of dimension 2r over Fv such that the contragredient theta

lift
σ′

1,v := (θV ′
],v
,W ′

v
(π′

1,v))∨

is nonzero. Moreover, it follows from Prasad’s conjectures (see Theorem 4.3.3) that BC(σ′,∨
1,v) = Π[,′

1,v ⊗ µv.
In particular, it follows from [Fin21, Theorem 8.1] and [MR18, Corollaire 3.5] that σ′

1,v is compactly induced
from an irreducible representation of some compact open subgroup of U(W ′

v). Thus it follows from the local
seesaw identity (see Lemma 5.1.1) and Proposition 4.3.1 that the theta lift

σ′
0,v := θV ′

],v
,W ′

v
(π′,∨

0,v)

is also nonzero, and
HomU(W ′

v)(σ′
0,v ⊗ ωW ′

v,ψv
⊗ σ′

1,v,C)
is nonzero. Moreover, it follows from Prasad’s conjectures (see Theorem 4.3.3(1)) that BC(σ′

0,v) = Π∨
0,v.

We now consider an infinite place u. let W ′
u be a skew-Hermitian space of dimension 2r and signature

(r, r) over F+,u, and let V ′
u be a Hermitian space of dimension 2r and signature (2r, 0) over F+,u. Let

σ′
1,u := (θV ′

u,]
,W ′

u
(1))∨

be the contragredient of the theta lift of the trivial representation of U(V ′
u,]) to U(W ′

u), and let

σ′
0,u := θV ′

u,W
′
u
(1)

be the theta lift of the trivial representation of U(V ′
u) to U(W ′

u). Then it follows from classical calculation
(see, for example, [Har07, §2.3] and [Li90]) that

• σ′,∨
1,u is a holomorphic discrete series representation with Harish-Chandra parameter

τ∨
1 =

(
2r + 1

2
, . . . ,

3
2
,−1

2
, . . . ,−2r − 1

2

)
and the lowest Ku-type being the character (k1, k2) 7→ det(k1)r+1 det(k2)−r; and

• σ′
0,u is a holomorphic discrete series representation with Harish-Chandra parameter

τ0 =
(

2r − 1
2

, . . . ,−2r − 1
2

)
and the lowest Ku-type being the character (k1, k2) 7→ det(k1)r det(k2)−r

for every infinite place u of F+. In particular, σ′,∨
1,u is a generalized Verma module for every infinite place

u of F+ (cf. [Gar05]). Moreover, by the local seesaw identity (see Lemma 5.1.1) and Proposition 4.3.1, the
space

HomU(Wu)(σ′
0,u ⊗ ωW ′

u
⊗ σ′

1,u,C)
is nonzero for every infinite place u of F+. Moreover, BC(σ′

0,v) = Π0,u.
By Arthur’s multiplicity formula (see [KMSW14, Theorem 1.7.1]), there exists a skew-Hermitian space

W2r of dimension 2r over F with signature (r, r) at every infinite place satisfying W2r,v ∼= W′
v for every

v ∈ {p, q}, and a cuspidal automorphic representation σ0 of U(W2r) satisfying σ0,v ∼= σ′
0,v for every v ∈

{p, q} ∪ Σ∞
F+

and BC(σ0) is isomorphic to Π∨
0 .

Because L( 1
2 ,Π0) is nonzero, it follows from the local conservation relation (see Theorem 4.3.2), The-

orem 2.1.1(1) and Theorem 4.4.4 that there exists a Hermitian space V2r of dimension 2r over F with
signature (2r, 0) at every infinite place, such that the conjugate global theta lift

π0 := θW2r,V2r
(σ0)
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is an (irreducible) cuspidal automorphic representation of V2r(AF ) with trivial Archimedean components.
Then it follows from Proposition 4.4.1 and the local conservation relation (see Theorem 4.3.2) that V2r,v ∼= V ′

v

and π0,v ∼= π′
0,v, for every v ∈ {p, q}. Moreover, it follows from Lemma 4.4.3 and Proposition 4.4.1 that

BC(π0) is isomorphic to Π0, and σ0 = θV2r,W2r
(π0). Set V2r+1 := (V2r)].

It follows from the Burger–Sarnak type principle (see Proposition 5.1.5) that there exists a cuspidal
automorphic representation σ1 of U(W2r)(AF+) such that σ1,v is isomorphic to σ′

1,v for every v ∈ {p, q}∪Σ∞
F+

,
together with automorphic forms ϕ0 ∈ σ0, ϕ1 ∈ σ1 and a Schwartz function φ ∈ S(L2r,1(AF+)) such that

FJ (ϕ0, ϕ1;φ) 6= 0.

Set Π[
1 := BC(σ1). Then Π[

1,v is isomorphic to Π[,′
1,v ⊗ µv for every v ∈ {p, q} and Π[

1,u is isomorphic to
BC(σ′,∨

1,u) for every u ∈ Σ∞
F+

. Set Π1 := (Π[
1 ⊗ µ−1) ⊞ 1, where 1 is the trivial representation of GL1(AF ).

Then Π1 is an almost cuspidal relevant representation of GL2r+1(AF ) (see Definition 1.1.3).
It follows from the global seesaw identity Lemma 5.1.4 that

π1 := θW2r,V2r+1(σ1)

is nonzero. Because V2r+1 is anisotropic, we know π1 is an (irreducible) cuspidal automorphic representation
of U(V2r+1)(AF+). In particular, it follows from Lemma 4.4.3 that π1 has trivial Archimedean component,
and π1,v is isomorphic to π′

1,v for every v ∈ {p, q}. Moreover, it follows from Proposition 4.4.3 that

BC(π1) ∼= (BC(σ1)⊗ µ−1) ⊞ 1 = Π1,

Thus it follows from the global seesaw identity again that there exist automorphic forms f0 ∈ π0 and f1 ∈ π1
such that

PGGP(f0, f1) 6= 0.
Let E′ be a strong coefficient field of Π1 containing E. The isomorphism ι` : C ∼−→ Q` induces a place λ′

of E′ with underlying place λ of E. We check that λ′ is an admissible place of E with respect to (Π0,Π1)
(see Definition 3.8.1).

• (L1), (L2), (L4-1) and (L5) are satisfied by (Λ1), (Λ2), (Λ4-1) and (Λ5), respectively.
• For (L3), ρΠ0,λ′ is absolutely irreducible by (Λ3). The restriction of ρΠ[

1,λ
′ ⊗E′

λ′
Q` to GalFq

is
residually absolutely irreducible by Proposition 2.1.1 and the definition of Π[,′

1,q. Thus ρΠ[,λ′ is
residually absolutely irreducible.

• For (L4-2), it is easy to check that (GI1
Frflx,+,P) with P(T ) = T 2 − 1 is satisfied by taking the

element (ρΠ0,λ′,+, ρΠ1,λ′,+, ε`)(φp).

• For (L6), if α = 0, then this follows from (Λ6). If α = 1, then this follows from the definition of Π[,′
1,p

and the Chebotarev density theorem applied to the representation ρΠ1,λ′ ⊕ ε` of GalF , we see that
there are infinitely many finite places w of F that are of degree 1 over Q satisfying that
(1) Π1,w is unramified with Satake parameter {α1,1, . . . , α1,2r+1} in which ι`(α1,i) is an `-adic unit

for every 1 ≤ i ≤ 2r + 1, and
(2) ι`(α1,i/α1,j) 6= ‖w‖ ∈ κλ′ for 1 ≤ i 6= j ≤ 2r + 1.

Then it follows from [YZ25, Theorem 1.5] that (L6) holds for λ′.
As F+ 6= Q, Hypothesis 3.2.3 is known for every positive integer N ≥ 2 by Proposition 3.2.4. We now

apply (the proof of) Theorem 3.9.2 to get

H1
f (F, ρΠ0,λ(n))⊗Eλ

E′
λ′ = H1

f (F, ρΠ0,λ′(r)) = 0.

Thus H1
f (F, ρΠ,λ(n)) vanishes. □

We now deduce Theorem A and Theorem C from Theorem B.

Corollary 5.1.9. Let A be a modular elliptic curve over F+. Suppose that F+ 6= Q and A has no complex
multiplication over F . If the central critical value L

(
Sym2r−1 AF ; r

)
does not vanish, then the Bloch–Kato

Selmer group
H1
f

(
F, Sym2r−1 H1

ét(AF ,Q`)(r)
)

vanishes for all but finitely many rational primes `.
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Proof. By [NT22, Theorem A] and [AC89], Sym2r−1 AF is modular. Let Π0 denote the automorphic rep-
resentation of GL2r(AF ) attached to Sym2r−1 AF , which is a cuspidal relevant representation. Thus Π0
has strong coefficient field Q, and ρΠ0,` is conjugate to Sym2r−1 H1

ét(AF ,Q`) as Q`[GalF ]-modules for every
rational prime `. Moreover,

L(1
2
,Π0) = L

(
r,Sym2r−1 AF

)
.

As F+ 6= Q, Hypothesis 3.2.3 is known for every positive integer N ≥ 2 by Proposition 3.2.4. Thus the
assertion is an immediate consequence of Theorem B and Lemma 5.1.7. □

Corollary 5.1.10. Let Π be a relevant automorphic representation of GL2r(AF ). Suppose that
(1) F+ 6= Q;
(2) There exists a finite place w of F such that Πw is supercuspidal;
(3) There exists a good inert place p of F (see Definition 3.3.3) such that Πp is a Steinberg representation.

Let E be a strong coefficient field of Π (see Definition 3.1.6). If the central critical value L( 1
2 ,Π) does not

vanish, then for almost every finite place λ of E, the Bloch–Kato Selmer group H1
f (F, ρΠ,λ(n)) vanishes.

Proof. As F+ 6= Q, Hypothesis 3.2.3 is known for every positive integer N ≥ 2 by Proposition 3.2.4. Thus
the assertion is an immediate consequence of Theorem B and Lemma 5.1.7. □

5.2. The self-dual case. Let F be a totally real number field. Let V2r+1 be a quadratic space of dimension
2r over F and let V1 a quadratic space of dimension 1 over F of discriminant 1. Let W2r be a symplectic
space of dimension 2r over F . Set V2r+2 := V2r+1 ⊕ V1. Let ι : O(V2r+1) ⊂ O(V2r+2) be the natural
inclusion. We fix a nontrivial additive character ψ of F\AF , and use notation defined in §4.

Consider the inclusion
O(V2r+1)×O(V1) ⊂ O(V2r+2)

and the diagonal embedding
Sp(W2r) ⊂ Sp(W2r)× Sp(W2r).

(Sp(W2r),O(V2r+2)) and
(Sp(W2r)× Sp(W2r),O(V2r+1)×O(V1))

are reductive dual pairs. In other words there is a seesaw diagram:

Sp(W2r)× Sp(W2r) O(V2r+2)

Sp(W2r) O(V2r+1)×O(V1)

.

We record the following local seesaw identity attached to the seesaw diagram (5.1).

Lemma 5.2.1. For irreducible admissible representations π0 of O(V2r+1)(F+,v) and σ1 of Sp(W2r)(F+,v),
there is a canonical isomorphism

HomSp(W2r)(F+,v)(ΘV2r+1,W2r
(π0)⊗ ωW2r

, π)
∼= HomO(V2r+1)(F+,v)

(
ΘW2r,V2r+2(σ1), π0

)
.

Proof. This is standard. □

We introduce the orthogonal Gross–Prasad periods and the Fourier–Jacobi periods.

Definition 5.2.2. Let π0 ⊂ A0(O(V2r+1)(AF )) and π1 ⊂ A0(O(V2r+2)(AF )) be cuspidal automorphic
representations, and f0 ∈ π0 and f1 ∈ π1 be cusp forms. We define the orthogonal Gross–Prasad period

PGP(f0, f1) :=
∫

O(V2r+1)(F )\O(V2r+1)(AF )
f0(h)f1(ι(h))dh.

Here the measure dh is the Tamagawa measure on O(V2r+1)(AF ). This integral is absolutely convergent
since f0 and f1 are rapidly decreasing.
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We set
W2r,1 := W2r ⊗F V1, W2r,2r+1 := W2r ⊗F V2r+1, W2r,2r+2 := W2r+1 ⊗F V2r+2.

Then they are all symplectic spaces over F+ as defined in §4.4. Fix Lagrangian subspaces
L2r,1 ⊂W2r,1, L2r,2r+1 ⊂W2r,2r+1,

then L2r,2r+1 := L2r,2r+1 ⊕ L2r,1 is a Lagrangian subspace of W2r,2r+2. For each n ∈ {1, 2r + 1, 2r + 2},
we denote by ωW2r,Vn

the Weil representation, which can be realized on the space of Schwartz functions
S(L2r,n). Then

ωW2r,V2r+2 = ωW2r,V2r+1⊗̂ωW2r
.

In particular, if φ2r,2r+2 = φ2r,2r+1 ⊗ φ2r,1 ∈ S(L2r,2r+1(AF ))⊗ S(L2r,1(AF )), then
θW2r,V2r+2(g, ι(h);φ2r,2r+2) = θW2r,V2r+1(g, h;φ2r,2r+1)θW2r,V1(g;φ2r,1)

for every (g, h) ∈ Sp(W2r)(AF )×O(V2r+1)(AF ).

Definition 5.2.3. Let σ̃0 ⊂ A0(S̃p(W2r)(AF )) and σ1 ⊂ A0(Sp(W2r)(AF )) be genuine cuspidal automor-
phic representations. Let ϕ̃0 ∈ σ̃0, ϕ1 ∈ σ1 be cusp forms and φ ∈ S(L2r,1(AF )) be a Schwartz function. We
define the Fourier–Jacobi period

FJ (ϕ̃0, ϕ1;φ) :=
∫

Sp(W2r)(F )\ Sp(W2r)(AF )
ϕ̃0(g̃)ϕ1(g)θW2r,V1(g̃;φ)dg.

Here g̃ is an arbitrary lift of g to S̃p(W2r), and the measure dg is the Tamagawa measure on Sp(W2r)(AF ).
This integral is absolutely convergent since ϕ̃0 and ϕ1 are rapidly decreasing and theta functions are of
moderate growth.

We will use the following global seesaw identity.

Lemma 5.2.4. Let σ1 ⊂ A0(Sp(W2r)(AF+)) and π0 ⊂ A0(O(V2r+1)(AF+)) be cuspidal automorphic
representations, such that

σ̃0 = θV2r+1,W2r (π0)
is a genuine cuspidal automorphic representation of S̃p(W2r)(AF ). Let ϕ1 ∈ σ1 and f0 ∈ π0 be cusp forms
and φ2r,1 ∈ S(L2r,1(AF+)), φ2r,2r+1 ∈ S(L2r,2r+1(AF+)) be Schwartz functions. Then

FJ
(
θV2r+1,W2r (f0, φ2r,2r+1), ϕ1;φ2r,1

)
= PGP

(
f0, θW2r,V2r+2(ϕ1;φ2r,2r+1 ⊗ φ2r,1)

)
.

Proof. The proof is the same as that of Lemma 5.1.4, thus omitted. □
We now explain how to deduce Conjecture E from Conjecture F. The key ingredient is the following

Burger–Sarnak type principle for Fourier–Jacobi periods on the pair (Sp(W2r), S̃p(W2r)), in the spirit of
[BS91, HL98, Pra07, Zha14]. We first fix notation. For every infinite place u of F , Sp(W2r)(Fu) has a
maximal compact subgroup Ku

∼= U(r). Denote the preimage of Ku in S̃p(W2r)(Fu) by K̃u. Under the
identification Ku

∼= U(r), one can realize

K̃u = {(g, z)|g ∈ U(r), z ∈ C×, det(g) = z2}.
There is a genuine “square-root of the determinant” character

√
det : K̃u 7→ C×, (k, z) 7→ z,

which satisfies (
√

det)2 = det (via the projection K̃u → Ku).

Proposition 5.2.5. Suppose that
(1) Σ is a finite set of places of F containing at least one finite place;
(2) σ̃0 is a genuine automorphic representation of S̃p(W2r)(AF ); and
(3) ⊗v∈Στv is an irreducible admissible representation of

∏
v∈Σ Sp2r(Fv) such that

(a) for every v ∈ Σ, the space HomSp(W2r)(Fv)(σ̃0,v ⊗ ωW2r,v,ψv
⊗ τv,C) is nonzero;

(b) for every finite place v ∈ Σ, τv is a supercuspidal representation that is compactly induced from
a representation of a compact open subgroup Kv of Sp2r(Fv); and
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(c) for every infinite place u ∈ Σ, τ∨
u is a holomorphic discrete series that is a generalized Verma

module in the sense of [Gar05]. Moreover, if the lowest Ku-type of τ∨
u is the character detm for

some positive integer m, then σ̃0,u has lowest K̃u-type (
√

det)2m−1 with multiplicity one.
Then there exists a cuspidal automorphic representation σ1 of Sp(W2r)(AF+) satisfying

(1) for every v ∈ Σ, σ1,v is isomorphic to τv; and
(2) there exist genuine automorphic forms ϕ̃0 ∈ σ̃0, ϕ1 ∈ σ1 and a Schwartz function φ ∈ S(L2r,1(AF ))

such that
FL(ϕ̃0, ϕ1;φ) 6= 0.

Proof. The proof is the same as that of Proposition 5.1.5, thus omitted. □
We introduce the notion of preadmissible places for the coefficient fields appearing in Conjecture F. This

is a preliminary notation that can be refined.

Definition 5.2.6. Let A be an elliptic curve over F with End(AF ) = Z, and Π a relevant automorphic
representation of GL2r+1(AF ). Let E ⊂ C be a strong coefficient field of Π (Definition 2.2.4). We say that
a finite place λ ∈ Σfin

E with underlying prime `, is preadmissible (with respect to (A,Π)) if
(pL1) The semi-simplified residual representation ρΠ,λ is either absolutely irreducible or a sum of a self-dual

absolutely irreducible representation with a self-dual character.
(pL2) There exists a finite place p of F and a finite extension E′ of E in C with a finite place λ′ over λ

satisfying
(a) {±1,±‖p‖±1 (mod `),±‖p‖±2 (mod `), . . . ,±‖p‖±4r (mod `)} consists of distinct elements;
(b) E has good reduction at p with ap(E)− (‖p‖+ 1) is divisible by `;
(c) Πp is unramified with Satake parameter {−1, α±1

1 , . . . , α±1
r } ⊂ OE′ such that {αi|1 ≤ i ≤ r} is

disjoint from {±1,±‖p‖±1
, . . . ,±‖p‖±4r} in κλ′ .

(pL3) There exists a finite place v of F such that Πv is unramified with Satake parameters {1, α±1
v,1, . . . , α

±1
v,r}

satisfying
‖v‖ /∈ {αv,iα−1

v,j |1 ≤ i 6= j ≤ r} ∪ {α±1
v,i |1 ≤ i ≤ r} ∪ {1} ⊂ F`.

We give an example where it is known that all but finitely many finite places λ of E are admissible.

Lemma 5.2.7. Let A and Π be as in Definition 5.2.6. If we assume that there exist finite places p, q of F
such that

(1) A has split multiplicative reduction at p, and
(2) Πp is unramified with Satake parameter of the form {−1, α±1

1 , . . . , α±1
r } satisfying αi 6= ±1 for every

1 ≤ i ≤ r; and
(3) Πq is either supercuspidal or an isobaric sum of a self-dual supercuspidal representation with a self-

dual character.
then there exists an effective constant N(F,A,Πp,Πq) depending on F,A,Πp, and Πq such that every finite
place λ of E with underlying prime ` greater than N(F,A,Πp,Πq) is admissible with respect to (A,Π).

Proof. We show that every condition in Definition 5.2.6 excludes only finitely many finite places of E.
For (pL1), the condition ρΠ[

1,λ
is absolutely irreducible only excludes finitely many finite places λ of E

by [LTX+24, Theorem 4.5.(1)] and (3).
For (pL2), it follows from temperedness (see Proposition 2.2.2) that |αi| = 1 for every 1 ≤ i ≤ r.

Moreover, αi is an algebraic number for every 1 ≤ i ≤ r by Remark 2.2.5. Thus it is clear that when ` is
large, (pL2)(a, c) is satisfied. By the Chebotarev density theorem, (L2) is satisfied for all such `.

For (pL3), it follows from Proposition 2.2.2(1) that ‖αi‖ = 1 for every 1 ≤ i ≤ 2r + 1. Thus, for every
sufficiently large rational prime `,

‖p‖ /∈ {±αiα−1
j |1 ≤ i 6= j ≤ r} ∪ {±α±1

i |1 ≤ i ≤ r} ∪ {±1} ⊂ F`.

Suppose λ is a finite place of E over `, we fix an isomorphism ι` : C ∼−→ Q` which induces λ. Applying the
Chebotarev density theorem to the representation ρΠ,λ ⊕ ε` of GalF , we see that (L3) holds for λ. □
Theorem 5.2.8. Let r be a positive integer, and let A be a modular elliptic curve over F with no complex
multiplication over F . Assume Conjecture F holds for r and A. If the central critical value L

(
Sym2r−1 A; r

)
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does not vanish, then there is an effective constant N(F,A, r) depending only on F,A, and r such that the
Bloch–Kato Selmer group

H1
f

(
F, Sym2r−1 H1

ét(A;Q`)(r)
)
.

vanishes for all rational primes ` greater than N(F,A, r).

Proof. By [NT22, Theorem A], Sym2r−1 A is modular. Let Π0 denote the automorphic representation of
GL2r(AF ) attached to Sym2r−1 A, which is a cuspidal automorphic representation. Thus Π0 has strong
coefficient field Q, and ρΠ0,` is conjugate to Sym2r−1 H1

ét(AF ,Q`) as Q`[GalF ]-modules for every rational
prime `. Moreover,

L(1
2
,Π0) = L

(
r,Sym2r−1 A

)
.

By [Ser72, Théorème 6] and [Lom15], there is an effective constant N1(F,A) depending only on A such
that the homomorphism

ρA,` : GalF → GL
(
H1

ét(AF ,F`)
)

is surjective for every rational prime ` greater than N1(F,A).
Suppose there is an effective constant N2(F,A, r) such that Conjecture F holds for any preadmissible

finite place λ of the strong coefficient field with underlying rational prime ` > N2(F,A, r). We set

N(F,A, r) := max(N1(F,A), N2(F,A, r), 216r).

Let ` > N(F,A, r) be a rational prime with a fixed isomorphism ι` : C ∼−→ Q`. Then we know the set

B2 :=
{
±1,±2±1,±2±2, . . . ,±2±4r}

consists of distinct elements in F`. By the Chebotarev density theorem, we can find a finite place p of F
satisfying

• The rational prime p underlying p is larger than max(`, 2r);
• A has good reduction at p; and
• ρA,`(φp) has eigenvalues {2, 1}.

We fix a totally positive element d ∈ F× satisfying (−1)r+1d 6= 1 ∈ F×/(F×)2.
We take a supercuspidal B2-avoiding good representation Π[[,′

1,p of GL2r(Fp) with respect to ι` (see Defi-
nition A.2.1) satisfying

• ι` rec2r(Π[[,′
1,p) is residually absolutely irreducible; and

• there exists a lift F ∈ WFp
of the arithmetic Frobenius element such that the eigenvalues

{α1, . . . , α2r} of ι` rec2r(Π[[,′
1,p)(F ) are `-adic units; and

•
‖p‖ /∈ {±αiα−1

j |1 ≤ i 6= j ≤ 2r} ∪ {±αi|1 ≤ i ≤ 2r} ⊂ F`.
holds.

Such a representation exists by Lemma A.2.2. Set Π[,′
1,p := Π[[,′

1,p ⊞ χ(−1)r+1d.
By the local Gan–Gross–Prasad conjecture (see Theorem 4.2.1(2)), there exists a quadratic space V ′

p of
dimension 2r + 1 over Fp with disc(V ′

p) = (−1)rd ∈ F×
p /(F×

p )2; and irreducible admissible representations
π′

0,p and π′
1,p of O(V ′

p) and O(V ′
p,]), respectively, satisfying

(1) FL(π′
0,p) = Π0,p and FL(π′

1,p) = Π[,′
1,v ⊞ 1, where 1 is the trivial representation of GL1(Fp); and

(2) HomO(V ′
p)

(
π′

1,p|O(V ′
p) ⊗ π′

0,p,C
)
6= 0.

In particular, π′
1,p is supercuspidal by [MR18, Corollaire 3.5]. According to Prasad’s conjecture (see The-

orem 4.3.3(7)), upon changing (π′
0,p, π

′
1,p) to (π′

0,p ⊗ det, π′
1,p ⊗ det) if necessary, we can assume that the

contragredient theta lift
σ′

1,p := (θV ′
],p
,Wp

(π′
1,p))∨

is nonzero, where Wp is a symplectic space of dimension 2r over Fp. Moreover, it follows from Prasad’s
conjectures (see Theorem 4.3.3) that FL(σ′,∨

1,p) = Π[,′
1,p ⊗ χ(−1)r+1d. In particular, it follows from [Fin21,

Theorem 8.1] and [MR18, Corollaire 3.5] that σ′
1,p is supercuspidal and compactly induced from an irreducible
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representation of some compact open subgroup of Sp(Wp). By the local seesaw identity (see Lemma 5.2.1)
and Proposition 4.3.1, the theta lift

σ̃′
0,p := θV ′

],p
,W ′

p
(π′,∨

0,p)
is also nonzero, and

HomSp(Wp)(σ̃′
0,p ⊗ ωW ′

p,ψp
⊗ σ′

1,p,C)
is nonzero. Moreover, it follows from Prasad’s conjecture (see Theorem 4.3.3(5)) that

FL(σ̃′
0,p) = Π∨

0,p ⊗ χ(−1)rd.

We now consider an infinite place u. Let Wu be a symplectic space of dimension 2r over Fu, and let V ′
u

be a quadratic space of dimension 2r + 1 over Fu with signature (2r + 1, 0). Let
σ′

1,u := (θV ′
u,]
,Wu

(1))∨

be the contragredient of the theta lift of the trivial representation of O(V ′
u,]) to Sp(W ′

u), and let

σ̃′
0,u := θV ′

u,Wu(1)

be the theta lift of the trivial representation of O(V ′
u) to S̃p(Wu). Then it follows from classical calculation

(see, for example, [KR90, Proposition 2.1] and [AB98, Theorem 3.3]) that
• σ′,∨

1,u is a holomorphic discrete series representation with Harish-Chandra parameter

τ∨
1 = (r, r − 1, . . . , 1)

and the lowest Ku-type being the character detr+1; and
• σ̃′

0,u is a holomorphic discrete series representation with Harish-Chandra parameter

τ̃0 =
(

2r − 1
2

,
2r − 3

2
, . . . ,

1
2

)
and the lowest K̃u-type being the character

√
det2r+1

for every infinite place u of F . In particular, σ′,∨
1,u is a generalized Verma module for every infinite place u of

F (cf. [Gar05]). Moreover, by the local seesaw identity (see Lemma 5.2.1) and Proposition 4.3.1, the space
HomSp(Wu)(σ̃′

0,u ⊗ ωWu ⊗ σ′
1,u,C)

is nonzero for every infinite place u of F . Moreover, FL(σ′
0,v) = Π0,u ⊗ χ(−1)r .

By Arthur’s multiplicity formula [GI18, Theorem 1.4], there exists a genuine cuspidal automorphic rep-
resentation σ̃0 of S̃p(W2r) satisfying σ̃0,u ∼= σ̃′

0,u for every u ∈ Σ∞
F+
∪ {p} and FL(σ̃0) ∼= Π∨

0 ⊗ χ(−1)rd.
Because L( 1

2 ,Π0) is nonzero, it follows from the local conservation relation (see Theorem 4.3.2), Theo-
rem 2.2.2(1) and Theorem 4.4.4 that there exists a unique quadratic space V2r+1 of dimension 2r + 1 over
F satisfying

• V2r+1 has signature (2r + 1, 0) at every infinite place of F ;
• disc(V2r+1) = (−1)rd ∈ F×/(F×)2; and
• the conjugate global theta lift

π0 := θW2r,V2r+1(σ̃0)
is an (irreducible) cuspidal automorphic representation of V2r+1(AF ) with trivial Archimedean
components.

Then it follows from Proposition 4.4.1 and the local conservation relation (see Theorem 4.3.2) that V2r+1,p is
isomorphic to V ′

p and π0,p is isomorphic to π′
0,p. Moreover, it follows from Lemma 4.4.3 and Proposition 4.4.1

that FL(π0) is isomorphic to Π0, and
σ̃0 = θV2r+1,W2r (π0).

Set V2r+2 := (V2r+1)].
It follows from the Burger–Sarnak type principle (see Proposition 5.1.5) that there exists a cuspidal

automorphic representation σ1 of Sp(W2r)(AF+) such that σ1,v is isomorphic to σ′
1,v for every v ∈ {p, q} ∪

Σ∞
F+

; together with automorphic forms ϕ̃0 ∈ σ̃0, ϕ1 ∈ σ1 and a Schwartz function φ ∈ S(L2r,1(AF+)) such
that

FJ (ϕ̃0, ϕ1;φ) 6= 0.
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Set Π[
1 := FL(σ1), which satisfies Π[

1,p
∼= Π[,′

1,p⊗χ(−1)r+1d and Π[
1,u
∼= FL(σ′,∨

1,u)⊗χ(−1)r+1 for every u ∈ Σ∞
F .

Then Π := Π[
1 ⊗ χ(−1)r+1d is a relevant automorphic representation of GL2r+1(AF ) (see Definition 2.2.1).

Set Π1 := Π ⊞ 1, where 1 is the trivial representation of GL1(AF ).
It follows from the global seesaw identity (see Lemma 5.1.4) that

π1 := θW2r,V2r+2(σ1)
is nonzero. Because V2r+2 is anisotropic, we know π1 is an (irreducible) cuspidal automorphic representation
of O(V2r+2)(AF ). In particular, it follows from Lemma 4.4.3 that π1 has trivial Archimedean component,
and π1,p is isomorphic to π′

1,p. Moreover, it follows from Proposition 4.4.3 that
FL(π1) ∼= (FL(σ1)⊗ χ(−1)r+1d) ⊞ 1 = Π1.

Thus it follows from the global seesaw identity again that there exist automorphic forms f0 ∈ π0 and f1 ∈ π1
such that

PGP(f0, f1) 6= 0.
Let E ⊂ C be a strong coefficient field of Π. The isomorphism ι` : C ∼−→ Q` induces a place λ of E. We

check that λ is a preadmissible place of E with respect to (E,Π1) (see Definition 5.2.6).
• For (pL1), note that the restriction of ρΠ,λ to GalFq

is a direct sum of a residually absolutely irre-
ducible self-dual representation σ with a self-dual character χ by Proposition 2.2.2 and the definition
of Π[,′

1,p. If the semi-simplified residual representation ρΠ,λ is not irreducible, then it is a sum of a
self-dual absolutely irreducible representation with a self-dual character. On the other hand, if it
is irreducible, then it is absolutely irreducible, because otherwise ρΠ,λ ⊗κλ

κλ is a sum of several
irreducible representations of the same dimension, contradicting the fact that ρΠ,λ|GalFq

= σ ⊕ χ.

• (pL2) holds by our choice of p and the definition of Π[,′
1,p; see Definition A.2.1.

• (pL3) holds by the definition of Π[[,′
1,p and the Chebotarev density theorem applied to the represen-

tation ρΠ,λ ⊕ ε` of GalF .
We now apply Conjecture F to the preadmissible place λ to get

H1
f

(
F, Sym2r−1 H1

ét(A;Q`)(r)
)
⊗Q`

Eλ = H1
f (F, ρΠ0,`(r))⊗Q`

Eλ = H1
f (F, ρΠ0,λ(r)) = 0.

Thus H1
f

(
F, Sym2r−1 H1

ét(A;Q`)(r)
)

vanishes.
The theorem is proved. □

Appendix A. Polarized local Galois representations

In this appendix, we construct certain (conjugate) self-dual local Galois representations of special kind.
These representations will be used in the Burger–Sarnak type principles.

A.1. Special conjugate self-dual local Galois representations. In this subsection, we construct certain
conjugate self-dual local Galois representations of special kind.

Let p be an odd rational prime, and let K be a finite extension of Qp. Denote by κ the residue field of
K, of cardinality q. Let K1 be the unramified quadratic extension of K. Let OK (resp. OK1) denote the
ring of integers of K (resp. K1) with maximal ideal mK (resp. mK1). Denote by κ1 the residue field of K1.
Fix a uniformizer $K of K.

We care about representations of WK1 that are conjugate-orthogonal, that is, if we write Πθ := (Πs)∨,
where Πs is the conjugate of Π by an element s ∈ WK which maps to c ∈ Gal(K1/K), then there is an
isomorphism f : Πθ ∼−→ Π satisfying (f∨)s = f . Constructing irreducible conjugate self-dual representations
of WK1 is more complicated than expected. We will only provide the following construction of residually
absolutely irreducible conjugate-orthogonal representations when there is a tamely ramified cyclic extension
of degree 2r.

Lemma A.1.1. Let ` be a rational prime distinct from p, with a fixed isomorphism ι` : C ∼−→ Q`. Suppose `
is coprime to 2pr and 2r|(q2 − 1). Then there exists a conjugate-orthogonal supercuspidal representation Π
of GL2r(K1) such that the Galois representation

ι` rec2r(Π) : WK1 → GL2r(Q`)
attached to Π via local Langlands correspondence is residually absolutely irreducible.

49



Proof. By local Langlands correspondence for GL2r(K1), it suffices to construct a residually absolutely
irreducible 2r-dimensional representation (ρ, V ) ofWK1 with Q`-coefficients, a lift s ∈WK of c ∈ Gal(K1/K),
and a nondegenerate pairing 〈−,−〉 : V × V → Q` satisfying

(A.1)

{〈
ρ(τ)f, ρ(sτs−1)g

〉
= 〈f, g〉

〈g, f〉 =
〈
f, ρ(s2)g

〉
for all τ ∈WK1 and f, g ∈ V .

Let γ ∈ κ×
1 be such that {γq, γ} is a κ-basis of κ1. Let γ ∈ K×

1 denote the Teichmüller lift of γ, and set

E = K1((γ$K)1/2r),
which is a totally (tamely) ramified cyclic Galois extension of K1 of degree 2r since 2r|(q2 − 1). Let OE
denote the ring of integers of E with maximal ideal mE . Let WE ⊂ WK1 denote the corresponding Weil
groups, and write abE : WE →W ab

E for the Abelianization map. Let

ArtE : E× ∼−→W ab
E

be the local Artin map, normalized so that uniformizers are mapped to geometric Frobenius classes.
Let τ be a generator of Gal(E/K1) ∼= Z/2rZ and let $E be a uniformizer of E such that τ($E) = ζ$E

for some 2r-th root of unity ζ ∈ K×
1 . Let φ ∈ Gal(E/K) be lift of c ∈ Gal(K1/K). By considering the

action of φ we may change the lift so that φ(γ) = γq and φ($E) = −$E . In particular, φ2 = 1.
Recall the group decomposition

E× = 〈$E〉 × κ×
1 × U1

E , U1
E = 1 + mE ,

where κ×
1 embeds into K×

1 via the Teichmüller lift [−] : κ×
1 → K×

1 . Since p > 2, the p-adic logarithm

log : U1
E → mE : 1 + x 7→

∑
k∈Z+

(−x)k+1

k

is a continuous group homomorphism and is Gal(E/K)-equivariant. We extend log to a map E× → mE by
setting log($E) = 0 and log |κ×

1
= 0.

Let eK denote the ramification index of K, and set k0 = b 2reK

p−1 c+ 1. Fix a positive integer m > k0 to be
determined later. Define, for x ∈ E,

ΨE := ι`e
2πi·trE/Qp (x)/pm+[K:Qp]

,

which is an additive character of E of conductor at most −(2reK(m − 1) + 1). Let χ : E× → Q`
× denote

the character
χ(x) := ΨE($E log x), x ∈ E×.

When m is sufficiently large, χφ = χ−1 and χσ 6= χ for every nontrivial element σ ∈ Gal(E/K1). Here we
use that mk0

E ⊂ log(E×). Set
ξ := χ ◦Art−1

E ◦abE : WE → Q`
×
.

Let
(ρ, V ) := IndWK1

WE
ξ

denote the induced representation of WK1 of dimension 2r. It follows from Mackey’s theory that ρ is
absolutely irreducible. Fix an element s ∈WK lifting φ ∈ Gal(E/K), and define a pairing on V given by

〈f, g〉 :=
∑

[x]∈WE\WK1

f(x)g(sxs−1).

Here for each [x] ∈ WE\WK , x ∈ WK is a lift of [x]. Note that this is well-defined because replacing x by
hx gives

f(hx)g(shxs−1) = ξ(h)f(x)g(shs−1(sxs−1)) = ξ(h)ξφ(h)f(x)g(sxs−1) = f(x)g(sxs−1).
This pairing is clearly nondegenerate. We check (A.1):〈

ρ(τ)f, ρ(sτs−1)g
〉

=
∑

[x]∈WE\WK1

f(xτ)g(sxτs−1) =
∑

[x]∈WE\WK1

f(x)g(sxs−1).
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〈g, f〉 =
∑

[x]∈WE\WK1

g(x)f(sxs−1) =
∑

[x]∈WE\WK1

f(x)g(s−1xs) = ξ(s2)−1 〈
f, ρ(s2)g

〉
.

Here we use that conjugation by s permutes left WE-cosets. We claim that ξ(s2) = 1. In fact, this claim is
independent of the lift s chosen, because for any other lift s′ = hs with h ∈WE ,

ξ((s′)2) = ξ(h)ξ(shs−1)ξ(s2) = ξ(h)ξφ(h)ξ(s2) = ξ(s2).

To prove the claim, we let H denote the subgroup of elements of WK whose images in Gal(E/K) lie in 〈φ〉.
Then there is an exact sequence

1→ ξ(WE)→ H/ ker(ξ)→ 〈φ〉 → 1.

Note that ξ(WE) is a finite p-group. So it follows from the Schur–Zassenhaus theorem that there exists a
lift s ∈WK of φ satisfying s2 ∈ ker(ξ). In particular, ξ(s2) = 1, and (A.1) is proved.

We check that ρ is residually absolutely irreducible: As ρ factors through WK/ ker(ξ), which is a finite
group with order dividing 2rqM for some positive integer M . Thus F`[Im(ρ)] is a semisimple algebra,
because ` is coprime to 2pr. Thus the same Mackey theory argument implies that ρ is residually absolutely
irreducible.

The lemma is proved. □

Definition A.1.2. Let ` be a rational prime distinct from p, with a fixed isomorphism ι` : C ∼−→ Q`. Let
B be a finite subset of F`. A B-avoiding good representation (with respect to ι`) is a representation Π of
GL2r(K1) such that there exists some lift F ∈ GalK of the arithmetic Frobenius element satisfying

• there is a partition n =
∑k
i=1 ni such that Π is an isobaric sum of distinct representations Πi where

each Πi is a supercuspidal representation of GLni(K1);
• for each 1 ≤ i ≤ k, if we write Πθ

i := (Πs
i )∨, where Πs

i is the conjugate of Πi by an element s ∈WK

which maps to c ∈ Gal(K1/K), then there is an isomorphism fi : Πθ
i

∼−→ Πi satisfying (f∨
i )s = fi;

• the Galois representation ι` rec2r(Π) : WK1 → GL2r(Q`) attached to Π via local Langlands maps F 2

to an element with generalized eigenvalues {α1, . . . , α2r} in which αi is an `-adic unit with residue
not in B for every 1 ≤ i ≤ 2r.

Suppose Π0 is a constituent of an unramified principal series of GL2r(K1) with Satake parameter α(Π0) =
{β1, . . . , β2r}. If ι`(βi) is an `-adic unit for every 1 ≤ i ≤ r, then we say a representation Π of GL2r(K1) is
Π0-avoiding (with respect to ι`) if it is B := {−q, qι`(β1), . . . , qι`(β2r)}(mod `)-avoiding.

For a given finite subset B ⊂ F`, constructing B-avoiding good representations is more complicated than
we expected. In fact, we do not know how to construct supercuspidal B-avoiding good representations.
Nonetheless, we have the following result which is enough for our purpose.

Lemma A.1.3. Let ` be a rational prime distinct from p, with a fixed isomorphism ι` : C ∼−→ Q`. Suppose
` is coprime to 2pr. For any finite subset B ⊂ F`, a B-avoiding good representation exists. We can further
ensure that the generalized eigenvalues {α1, . . . , α2r} as defined in Definition A.1.2 satisfy

q2 /∈ {αiα−1
j |1 ≤ i 6= j ≤ 2r} ∪ {αi|1 ≤ i ≤ 2r} ⊂ F`.

Proof. By local Langlands correspondence for GL2r(K1), it suffices to construct
• a 2r-dimensional representation (ρ, V ) of WK1 with Q`-coefficients that is a sum of r distinct 2-

dimensional irreducible representations,
• a lift F ∈WK of the arithmetic Frobenius element,
• a lift s ∈WK of c ∈ Gal(K1/K), and
• a nondegenerate pairing 〈−,−〉 : V × V → Q`

satisfying
(1)

(A.2)

{〈
ρ(τ)f, ρ(sτs−1)g

〉
= 〈f, g〉

〈g, f〉 =
〈
f, ρ(s2)g

〉
for all τ ∈WK1 and f, g ∈ V ; and
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(2) The eigenvalues {α1, . . . , α2r} of ρ(F 2) are `-adic units with residues not in B, and

q2 /∈ {αiα−1
j |1 ≤ i 6= j ≤ 2r} ∪ {αi|1 ≤ i ≤ 2r} ⊂ F`.

Let R/K be a quadratic ramified extension and let E = RK1. Let OE denote the ring of integers of E
with maximal ideal mE . Let τ denote the nontrivial element of Gal(R/K) ∼= Z/2Z. Then there is a natural
identification

Gal(E/K) = 〈τ〉 × 〈c〉 ∼= Z/2Z× Z/2Z.
Let WE ⊂ WK1 ⊂ WK denote the corresponding Weil groups, and let abE : WE → W ab

E denote the
Abelianization map. Let the Artin map

ArtE : E× ∼−→W ab
E

be normalized so that uniformizers are mapped to geometric Frobenius classes. Choose a uniformizer $R of
R with τ($R) = −$R.

Recall the group decomposition

E× = 〈$R〉 × κ×
1 × U1

E , U1
E = 1 + mE ,

where κ×
1 embeds into K×

1 via the Teichmüller lift [−] : κ×
1 → K×

1 . Since p > 2, the p-adic logarithm

log : U1
E → mE : 1 + x 7→

∑
k∈Z+

(−x)k+1

k

is a continuous group homomorphism and is Gal(E/K)-equivariant. We extend log to a map E× → mE by
setting log($R) = 0 and log |κ×

1
= 0.

Let dK denote the different exponent of K, so the different ideal dK of K over Qp satisfies dK = mdK

K .
Let eK denote the ramification index of K, and set k0 = b 2eK

p−1c + 1. Fix a positive integer m > k0 to be
determined later. Let

ΨQp
: Qp → Q`

× : x 7→ ι`e
2πix

denote the standard additive character of Qp of conductor 0, and set

ΨK := ΨQp

(
trK/Qp

($−dK−m
K x)

)
, ΨE := ΨK ◦ trE/K

Then ΨE is an additive character of E of conductor 1− 2m.
For each 1 ≤ i ≤ r, let χi : E× → Q`

× denote the character given by

χi(x) := ΨE(p1−i$R log x), x ∈ E×.

Set φ = τc ∈ Gal(E/K). Then χφi = χτi = χ−1
i 6= χi for every 1 ≤ i ≤ r. It is clear that χi 6= χ±

j for
1 ≤ i < j ≤ r. Here we use that mk0

E ⊂ log(E×). Set

ξi := χi ◦Art−1
E ◦abE : WE → Q`

×
, 1 ≤ i ≤ r.

For each 1 ≤ i ≤ r, let
(ρi, Vi) := IndWK1

WE
ξi

denote the induced representation of WK of dimension 2r. And we define

(ρ, V ) :=
r⊕
i=1

(ρi, Vi).

It follows from Mackey’s theory that ρ is a direct sum of r distinct 2-dimensional absolutely irreducible
representations. Fix any element s ∈WK lifting φ ∈ Gal(E/K), and define a pairing on Vi given by

〈(f1, . . . , fr), (g1, . . . , gr)〉 :=
r∑
i=1

∑
[x]∈WE\WK1

fi(x)gi(sxs−1).

Here for each [x] ∈ WE\WK , x ∈ WK is a lift of [x]. The same argument as in the proof of Lemma A.1.1
shows that (A.2) holds.
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We compute the Frobenius eigenvalues of the residual representation of ρ. Fix a lift F0 ∈ WK of
φ ∈ Gal(E/K). For each t ∈ IE , F = tF0 is also a lift of c ∈ Gal(E/K). The characteristic polynomial of
ρ(F 2) is

χρ(F 2)(X) =
r∏
i=1

(X − ξi(F 2))(X − ξi(F 2)−1).

For each 1 ≤ i ≤ r, note that
ξi(F 2) = ξi(F 2

0 )ΨE

(
p1−i$RtrE/R(log Art−1

E abE(i))
)

= ξ(F r0 )ΨQp

(
trK/Qp

$−dK−m
K trR/K

(
2p1−i$RtrE/R(log Art−1

E abE(i))
))
.

When t varies, log Art−1
E abE(t) ranges over all elements in mk0

E . Since E/R is unramified, trE/R(log Art−1
E abE(t))

ranges over all elements in mk0
R , and

trR/K
(
2p1−i$RtrE/R(log Art−1

E abE(i))
)

ranges over all elements in mk0
K . Thus when t varies,

ΨQp

(
trK/Qp

$−dK−m
K trR/K

(
2p1−i$RtrE/R(log Art−1

E abE(i))
))

can be every pb m−k0
eK

c-th roots of unity in Q`. Thus, when s is large, it is clear that we can take some t ∈ IE
such that ξi(F 2) is not contained in the set

{b±1|b ∈ B} ∪ {q±1, q±2} ⊂ F`
for every 1 ≤ i ≤ r. As a result, ρ(F 2) has no eigenvalues in B.

Similarly, when s is large, we can further assume that t ∈ IE is chosen so that each of the elements
ξi(F 2)ξj(F 2) = ξi(F 2

0 )ΨE

(
(p1−i + p1−j)$RtrE/R(log Art−1

E abE(i))
)
, 1 ≤ i < j ≤ r

and
ξi(F 2)ξ−1

j (F 2) = ξi(F 2
0 )ΨE

(
(p1−i − p1−j)$RtrE/R(log Art−1

E abE(i))
)
, 1 ≤ i ≤ r

is not contained in {q±2} ⊂ F`.
The desired properties of ρ are all proved. □

A.2. Special self-dual local Galois representations. Let p be an odd rational prime, and let K be a
finite extension of Qp. Let κ denote the residue field of K, of cardinality q. let OK denote the ring of integers
of K with maximal ideal mK . Fix a uniformizer $K of K.

Definition A.2.1. Let ` be a rational prime distinct from p, with a fixed isomorphism ι` : C ∼−→ Q`. For a
finite subset B ⊂ F`, a supercuspidal B-avoiding good representation (with respect to ι`) is a supercuspidal
representation Π of GL2r(K) such that there exists some lift F ∈ GalK of the arithmetic Frobenius element
satisfying

• there is an isomorphism f : Π∨ ∼−→ Π satisfying f∨ = f .
• the Galois representation ι` rec2r(Π) : WK → GL2r(Q`) attached to Π via local Langlands maps F

to an element with generalized eigenvalues {α1, . . . , α2r} in which αi is an `-adic unit with residue
not in B for every 1 ≤ i ≤ 2r.

If Π0 is a constituent of an unramified principal series of GL2r(K) with Satake parameter α(Π0) =
{β1, . . . , β2r}, then we say a representation Π of GL2r(K) is Π0-avoiding if it is B-avoiding for

B := {±1,±q±1, . . . ,±q±4r} ∪ {q1/2β1, . . . , q
1/2β2r} ⊂ F`.

Lemma A.2.2. Let ` be a rational prime with an isomorphism ι` : C ∼−→ Q` satisfying ` ∤ 2pr. For any
finite subset B ⊂ F`, a supercuspidal B-avoiding good representation Π exists. Moreover, we can make sure
that ι` rec2r(Π) is absolutely residually irreducible. If q2r − 1 is not divisible by `, we can further make sure
that the generalized eigenvalues {α1, . . . , α2r} as defined in Definition A.2.1 satisfy

q /∈ {±αiα−1
j |1 ≤ i 6= j ≤ 2r} ∪ {±αi|1 ≤ i ≤ 2r} ⊂ F`.

Proof. It suffices to show that we can find a residually absolutely irreducible 2r-dimensional representation
(ρ, V ) of WK with Q`-coefficients and a lift F ∈ GalK of the arithmetic Frobenius element satisfying
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• there exists a WK-invariant nondegenerate Q`-valued symmetric pairing on V ;
• the eigenvalues {α1, . . . , α2r} of ρ(F ) are `-adic units with residues not in B; and
•

q /∈ {±αiα−1
j |1 ≤ i 6= j ≤ 2r} ∪ {±αi|1 ≤ i ≤ 2r} ⊂ F`.

holds if q2r − 1 is not divisible by `.
Choose U/K unramified of degree r with Frobenius class σ, and R/K ramified quadratic with Galois

group Gal(R/K) = {1, τ}. Set E = UR. Let OE denote the ring of integers of E with maximal ideal mE .
Then there is a natural identification

Gal(E/K) = 〈φ〉 × 〈τ〉 ∼= Z/rZ× Z/2Z.

Let WE ⊂WK be the corresponding Weil groups, and let abE : WE →W ab
E denote the Abelianization map.

Let the Artin map
ArtE : E× ∼−→W ab

E

be normalized so that uniformizers are mapped to geometric Frobenius classes.
Let κU denote the residue field of U . Choose a uniformizer $R of R satisfying τ($R) = −$R. Recall

the decomposition
E× = 〈$R〉 × κ×

U × U
1
E , U1

E = 1 + mE ,

where κ×
U embeds into K× via the Teichmüller lift [−] : κ×

U → K×. Since p > 2, the p-adic logarithm

log : U1
E → mE : 1 + x 7→

∑
k∈Z+

(−x)k+1

k

is a continuous group homomorphism and is Gal(E/K)-equivariant. We extend log to a map E× → mE by
setting log($R) = 0 and log |κ×

U
= 0.

Let dK denote the different exponent of K, so the different ideal dK of K over Qp satisfies dK = mdK

K .
Let eK denote the ramification index of K, and set k0 = b 2eK

p−1c + 1. Fix a positive integer s > k0 to be
determined later. Let

ΨQp
: Qp → Q`

× : x 7→ ι`e
2πix

denote the standard additive character of Qp of conductor 0, and set

ΨK := ΨQp

(
trK/Qp

($−dK −s
K x)

)
, ΨE := ΨK ◦ trE/K

Then ΨE is an additive character of E of conductor 1− 2s.
Take an element γ ∈ κ×

U satisfying
(1) γq

i

6= ±γ for every 1 ≤ i ≤ r − 1, and
(2) trκU/κ(γ) 6= 0.

Such an element γ exists by normal basis theorem. Indeed, we can take γ such that

{σq
i

(γ)|0 ≤ i ≤ r − 1}

is a κ-basis of κU . Set α = $R[γ]. Then
(1) τ(α) = −α, and
(2) σ(α)− α ∈ mE ∖m2

E for every nontrivial element σ ∈ Gal(E/K).
Let χ : E× → Q`

× denote the character given by

χ(x) := ΨE(α log x), x ∈ E×.

Then χτ = χ−1 and χσ 6= χ for every nontrivial element σ ∈ Gal(E/K). Here we use that mk0
E ⊂ log(E×).

Set
ξ := χ ◦Art−1

E ◦abE : WE → Q`
×
.

Let
(ρ, V ) := IndWK

WE
ξ
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be the induced representation of WK of dimension 2r. It follows from Mackey’s theory that ρ is absolutely
irreducible. Fix any element y ∈WK lifting τ ∈ Gal(E/K), and define a pairing on V given by

〈f, g〉 :=
∑

[x]∈WE\WK

f(x)g(y−1x).

Here for each [x] ∈ WE\WK , x ∈ WK is a lift of [x]. Note that this is well-defined because replacing x by
hx gives

f(hx)g(y−1hx) = ξ(h)f(x)g(y−1hy(y−1x)) = ξ(h)ξτ (h)f(x)g(y−1x) = f(x)g(y−1x).

This pairing is clearly WK-invariant and nondegenerate. We check that it is symmetric:

〈f, g〉 =
∑

[x]∈WE\WK

f(x)g(y−1x)

=
∑

[x]∈WE\WK

f(yxy−1)g(xy−1)

=
∑

[x]∈WE\WK

f(yx)g(x)

= ξ(y2)
∑

[x]∈WE\WK

g(x)f(y−1x)

= ξ(y2) 〈g, f〉

Here we use that conjugation by y permutes left WE-cosets. We claim that ξ(y2) = 1. In fact, this claim is
independent of the lift y chosen, because for any other lift y′ = hy with h ∈WE ,

ξ((y′)2) = ξ(h)ξ(yhy−1)ξ(y2) = ξ(h)ξτ (h)ξ(y2) = ξ(y2).

To prove the claim, we let H denote the subgroup of elements of WK whose images in Gal(E/K) lie in 〈τ〉.
Then there is an exact sequence

1→ ξ(WE)→ H/ ker(ξ)→ 〈τ〉 → 1.

Note that ξ(WE) is a finite p-group. So it follows from the Schur–Zassenhaus theorem that there exists a
lift y ∈WK of τ satisfying y2 ∈ ker(ξ). In particular, ξ(y2) = 1, and the form 〈−,−〉 is symmetric.

We check that ρ is residually absolutely irreducible: As ρ factors through WK/ ker(ξ), which is a finite
group with order dividing 2rqr(2s−3). Thus F`[Im(ρ)] is a semisimple algebra, because ` is coprime to 2pr.
Thus the same Mackey theory argument implies that ρ is residually absolutely irreducible.

We compute the Frobenius eigenvalues of the residual representation of ρ. Fix a lift F0 ∈ WK of
φ ∈ Gal(E/K). For each t ∈ IE , F = tF0 is also lift of 〈φ〉 ∈ Gal(E/K). The characteristic polynomial of
ρ(F ) is

χρ(F )(X) = (Xr − ξ(F r))(Xr − ξ(F r)−1).
Note that

ξ(F r) = ξ(F r0 )ΨE

(
αtrE/R(log Art−1

E abE(i))
)

= ξ(F r0 )ΨQp

(
trK/Qp

$−dK −s
K trR/K

(
trE/R(α)trE/R(log Art−1

E abE(i))
))
.

It follows from the choice of γ that

trE/R(α) = $RtrE/Rγ ∈ mR ∖m2
R.

When t varies, log Art−1
E abE(t) ranges over all elements in mk0

E . Since E/R is unramified and trE/R(α) ∈
mR ∖m2

R, trE/R(log Art−1
E abE(t)) ranges over all elements in mk0

R , and

trR/K
(
trE/R(α)trE/R(log Art−1

E abE(i))
)

ranges over all elements in mk0
K . Thus when t varies,

ΨQp

(
trK/Qp

$−dK −s
K trR/K

(
trE/R(α)trE/R(log Art−1

E abE(i))
))
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can be every pb s−k0
eK

c-th roots of unity in Q`. When s is large, it is clear that we can take some t ∈ IE such
that ξ(F r) is not contained in the set

{b±r|b ∈ B} ∪ {(±q)±r} ⊂ F`.
As a result, ρ(F ) has no eigenvalues in B. Moreover, if q2r − 1 is not divisible by `, it is clear that

q /∈ {±αiα−1
j |1 ≤ i 6= j ≤ 2r} ∪ {±αi|1 ≤ i ≤ 2r} ⊂ F`

is satisfied.
The desired properties of ρ are all proved. □
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