ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR POLARIZED MOTIVES
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HAO PENG

ABSTRACT. We study the Beilinson—Bloch—Kato conjecture for polarized motives. In the conjugate self-dual
case, we show that if the central L-value does not vanish, then the associated Bloch—-Kato Selmer group
with coefficients in a suitable local field vanishes. In the self-dual analytic rank-zero case, we reduce the
conjecture to a conjecture in the endoscopic Rankin—Selberg case related to the orthogonal Gross—Prasad
periods.
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1. INTRODUCTION

The Beilinson—Bloch—Kato conjecture for motives vastly generalizes the rank part of the Birch—
Swinnerton-Dyer conjecture for elliptic curves. In this article, we study the Beilinson-Bloch-Kato
conjecture for motives associated with self-dual (resp. conjugate self-dual) automorphic representations of
GLg2,(AF), where F' C C is a totally real number field (resp. a CM field).

Let Mot™(F, E) denote the pseudo-Abelian category of Chow motives over F with coefficients in a
number field E (see, for example, [And04]). For the complex conjugation ¢ € Gal(C/R), a polarization of
M is an isomorphism M¢ =5 MY(1) in the category Mot'®(F, E). For any Chow motive M € Mot™"(F, E)
and any finite place A of E, there is a A\-adic realization M), which is a representation of Gal(F/F) with
E\-coeflicients. We consider the Bloch-Kato Selmer group

H}(F, M) = ker (Hl(F, My) = [[H (Tw, My) x [H(Fu, My @q, Bcrys,g))
wil w|l
where £ is the underlying rational prime of A and Be,ys ¢ is the f-adic crystalline period ring.
For example, if A is an Abelian variety over F' of dimension g and M = h2971(A)(g) is the Albanese
motive of A with coefficient field Q, then H} (F, My) is canonically isomorphic to

@g ®Z[ ]&1 Selgn (A/F)

for every rational prime ¢. Here Sely(A/F) is the mod-k Selmer group of A over F for every positive integer
k.

Suppose M is a polarized motive in Mot™'(F, E) and A is a finite place of E. Conjecturally, the L-
function L(s, M) attached to My has a meromorphic continuation to the entire complex plane, satisfying a
functional equation

L(s,M)y) = e(M)e(M)™°L(—s, My)
where (M) € {£1} is the root number and ¢(M) is the conductor; see [Del79]. Assuming this conjectural
functional equation, we recall the following Beilinson-Bloch-Kato conjecture [BK90].

Conjecture (Beilinson-Bloch-Kato).
ords—oL(s, M) = dimp, H}(F, M) — dimp, H(F, M,).
We focus on the analytic rank-zero case, that is, when L(0, M) is nonzero.

1.1. The conjugate self-dual case. Let F' C C be a totally imaginary quadratic extension of a totally
real number field Fy C R. We first state a less technical main result.

Theorem A. Letr be a positive integer and let A be a modular elliptic curve over Fy. Suppose that F.y #0Q
whenever v > 1, and that A has no complex multiplication over F. If the central critical value

L (7", Sym? ! AF)
is monzero, then for all but finitely many rational primes ¢, the Bloch-Kato Selmer group
H}c (F, Sym? ! H{, (A%, Qo) (r))
vanishes.

Remark 1.1.1. The finite set of rational primes ¢ that are excluded in Theorem A can be effectively bounded
in terms of F, A, and r. The condition F} # Q is imposed because Hypothesis 3.2.3 on the cohomology of
unitary Shimura varieties is not yet known for N > 4 if F; = Q. This condition is not used elsewhere.

Remark 1.1.2. When r = 1, Theorem A recovers part of the Birch—-Swinnerton-Dyer conjecture for Ap. If,
in addition, Fly = @, then this is covered by Kolyvagin’s work [Kol90], which introduced the Heegner point
Euler system; it uses the Gross—Zagier formula [GZ86] to pass to the analytic rank-one case. For Fy # Q,
the corresponding result was later established in [Zha0l,Lon06,Lon07, Nek12].

When r = 1 and F; = Q, there are other approaches to Theorem A. In [Kat04], Kato used p-adic
families of Beilinson elements in the K-theory of modular curves to construct Selmer classes via p-adic Hodge
theory, known as Kato’s Euler system. In [BD05], Bertolini and Darmon developed a different approach that
constructs Selmer classes via level-raising congruences on Shimura curves, known as the bipartite Fuler system
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(see [How06] for a systematic formulation). Under mild additional assumptions, these yield alternative proofs
of Kolyvagin’s result that do not invoke the Gross—Zagier formula.

Theorem A is a special case of a more general result concerning the Bloch—Kato Selmer groups of Ga-
lois representations attached to conjugate self-dual automorphic representations. We first introduce the
automorphic representations we study.

Definition 1.1.3. An isobaric automorphic representation IT of GLy (A g) with N > 2 is called a (conjugate
self-dual) relevant automorphic representation if
(1) I is conjugate self-dual in the sense that its contragredient ITV is isomorphic to IT o c;

(2) for every Archimedean place w of F', II,, is isomorphic to the irreducible principal series repre-
sentation induced from the characters (arg'=", arg3~ ... argV~—1), where arg : C* — C* is the
argument character defined by the formula arg(z) = z/v/2Z;

(3) either one of the following holds:
(a) II is cuspidal.
(b) N is odd and II is an isobaric sum of a character of GL;(Ar) with a cuspidal automorphic
representation of GLy_1(AF).
A relevant representation IT is called almost cuspidal if it is not cuspidal, in which case we write IT = II’Hy,
where x is a conjugate self-dual character of F*\A%.

Remark 1.1.4. Note that our definition of relevant automorphic representations is slightly more general than
that of [LTX*22, Definition 1.1.3]: A representation II of GLx(AF) is relevant in their sense if and only if
it is cuspidal and relevant in our sense.

If IT is a relevant automorphic representation, then it is regular algebraic in the sense of [Clo90, Defin-
tion 3.12]. Moreover, it is well known that the Asai L-function L(s, I, As(_l)N) is regular at s = 1 for each
isobaric factor II' of TI (see, for example, [FP23, Theorem 9.1]).

We now state our main result in terms of automorphic representations analogous to Theorem A.

Theorem B. Let r be a positive integer and II be a relevant automorphic representation of GLa,.(Ap). Let
E be a strong coefficient field of I (see Definition 3.1.6). If the central critical value

L(i’ﬂ)

is monzero, then for every admissible place A\ of E with respect to 11, the Bloch—Kato Selmer group
H}(F, pria(r))

vanishes. Here pr x is the Galois representation of F with coefficients in Ey attached to I1 as described in
Proposition 2.1.1 and Definition 3.1.6.

Remark 1.1.5. In the setting of the unitary Friedberg—Jacquet periods, M. Zanarella studied automorphic
representations II in a framework close to ours, under the additional assumption that IT is self-dual [Zan24].
His argument relies on the conjecture of Leslie-Xiao—Zhang [LXZ25]; see also [LXZ25b] for recent progress
on this conjecture.

The notion of admissible places appearing in Theorem B is defined in Definition 5.1.6, which consists of
a long list of assumptions. It is expected that all but finitely many finite places are admissible (with respect
to II). Indeed, we have the following family of abstract examples where all but finitely many finite places
are admissible.

Theorem C. Let r and II be as in Theorem B. Suppose that
(1) Fy £Q ifr > 1;
(2) There exists a finite place w of F such that 1L, is supercuspidal;
(3) There exists a good inert place p of F (see Definition 3.3.3) such that I, is a Steinberg representa-

tion.
Let E be a strong coefficient field of I (see Definition 3.1.6). If the central critical value
1
L(=, 10
(51
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is monzero, then for all but finitely many finite places A of E, the Bloch—Kato Selmer group
H} (F, pria(r))

vanishes.

Remark 1.1.6. In condition (b) of Theorem C, if F' is Galois over Q or contains an imaginary quadratic field,
then a good inert place of Fy is just a finite place of Fy that is inert in F'.

Using theta correspondence and a Burger—Sarnak type principle for Fourier—Jacobi periods on a pair of
global unitary group (Ug,., Us,.), we reduce Theorem B to the following theorem concerning central critical
values of Rankin—Selberg L-functions. Let n > 2 be a positive integer. Denote by ng and n; the unique even
and odd numbers in {n,n + 1}, respectively.

Theorem D. Let Iy, I1; be relevant automorphic representations of GL,,(Ar) and GL,, (A ), respectively,
such that Iy is cuspidal and I1; is almost cuspidal of the form I1; = II}M1 where 1 is the trivial representation
of GL1(AFp). Assume Fy # Q if n > 2, and assume there is a finite place w of F over a place of Fy inert
in F such that Hwa is square-integrable. Let E C C be a strong coefficient field of both Iy and II; (see
Definition 3.1.6). If the central critical value

1 1
L(§7H0) 'L(§’H0 x I1)

is nonzero, then for every admissible place A of E with respect to (Ilp,I11), the Bloch-Kato Selmer group
H} (F, priy A (n0/2))

vanishes.

Remark 1.1.7. Theorem D is analogous to one of the main results of [LTX"22] that concerns the analytic
rank-zero case, where they assumed that II; is relevant and cuspidal. Via the Gan—Gross—Prasad conjecture
[GGP12], which is established in our case in [BPCZ22], the theorem can be regarded as relating nonvanishing
unitary Gan—Gross—Prasad periods on a pair of unitary groups (Us,, Ug,41) to the vanishing of Bloch-Kato
Selmer groups.

Remark 1.1.8. The notion of admissible places appearing in Theorem D is defined in Definition 3.8.1, which
consists of a long list of assumptions. The admissibility condition here is weaker than the analogous admis-
sibility condition in [LTX'22, Definition 8.1.1]. Tt is expected that if the two automorphic representations
IIy and II; are not correlated in terms of Langlands functoriality, then all but finitely many finite places of
E are admissible with respect to (ITp,I1;). For example, if we assume that

(1) F is Galois over Q or contains an imaginary quadratic field,

(2) for each a € {0, 1}, there exists a finite place w, of F' such that II, ., is supercuspidal, and

(3) there exists a finite place p; of F underlying a unique place p of F, such that Il , is a Steinberg
representation and H?,p is unramified with Satake parameter not containing 1,
then all but finitely many finite places of E are admissible with respect to (IIy,II;); see Lemma 3.8.3.

1.2. The self-dual case. We now state analogous conjectures in the self-dual case. Let F' C R be a totally
real number field.

Conjecture E. Let 1 be a positive integer and let A be a modular elliptic curve over F with no complex
multiplication over F'. If the central critical value

L(r, Sym?" ! A)

is nonzero, then for all rational primes ¢ greater than an effective constant depending only on A and r, the
Bloch—Kato Selmer group
H}‘ (Fa SmeT—l Hét (Af7 Qf)('r))

vanishes.
Remark 1.2.1.

(1) Theorem A is implied by Conjecture E. In fact, we can even drop the assumption F, # Q in
Theorem A if Conjecture E is true.



(2) When r = 1, Conjecture E is established by Kolyvagin [Kol90] when F' = Q using the Gross—Zagier
formula [GZ86], and later generalized to the case when F # Q in [Zha01,Lon06, Lon07, Nek12].

(3) When r = 2 and F = Q, Conjecture E is known by work of H. Wang [Wan22] and N. Sweeting
[Swe25] using the bipartite Euler system method.

When r-[F : Q] is even, it appears that Conjecture E would follow from Theorem A provided the following
analytic statement holds:

(NV,.): For any elliptic curve A over F with no complex multiplication over F such that L (r, Sym? ! A) is
nonzero, there exists a totally negative element D € F* effectively bounded by F, A, and r satisfying
that the central critical value

L (r,Sym* " AP)

is nonzero, where AP is the twist of A by the quadratic extension F(v/D)/F.

If r = 1, (NV;) holds by the nonvanishing theorem of Friedberg—Hoffstein for quadratic twists with prescribed
local behavior; cf. [FH95, Theorem B]. For r > 2, (NV,.) appears to lie beyond current techniques; even the
case r = 2 seems difficult (see, for example, [RY23, BFK 123, HJL23)).

Alternatively, using theta correspondence and a Burger-Sarnak type principle for Fourier—Jacobi periods
on the symplectic-metaplectic pair (Sp,,., Sps,.), we show that Conjecture E can be reduced to another
conjecture of Gan—Gross—Prasad type, relating nonvanishing of orthogonal Gross—Prasad periods to vanishing
of Bloch—Kato Selmer groups.

Conjecture F. Let r be a positive integer and let A be an elliptic curve over F' with no complex multipli-
cation over F. Suppose that there exist
(1) a self-dual automorphic representation IT of GLa,1(A ) that is either cuspidal or an isobaric sum of
a self-dual cuspidal automorphic representation of GLa,(A ) with a nontrivial quadratic character
of F*\A%;
(2) a pair (V,Vy) in which V is a quadratic space of dimension 2r + 1 over F' that is positive definite at
every Archimedean place of F satisfying —disc(V) ¢ F*?, and Vy := V @& Fe where e has norm 1;

(3) cuspidal automorphic representations mg C A¢(O(V)) and m1 C Ag(O(V}y)) with trivial Archimedean
components and with Arthur parameters Sym® ! A and I8 1, respectively (see Definition 4.4.2);"
and

(4) cusp forms fy € mp and fi € 7y,

such that the orthogonal Gross—Prasad period

(L1) Par(fo f1) = / folh) f1(:(h))dh

O(V)(FN\O(V)(AFr)

is nonzero. Here ¢ : O(V) < O(Vy) is the embedding induced by the inclusion V. C V4. Let E C C
be a strong coefficient field of II (see Definition 2.2.4). Then there exists an effective constant N(F, A,r)
depending only on F', A, and r, such that the Bloch—-Kato Selmer group

Hj (F,Sym™ ™" Hg (A Qo) (7))
vanishes for all rational primes ¢ > N(F, A, r) underlying a preadmissible place A of E with respect to (A, II).

Remark 1.2.2. When r = 1 and F = Q, Conjecture F is known by results of Y. Liu [Liul6] under suitable
conditions, obtained using Hirzebruch—Zagier cycles and the bipartite Euler system method.

Remark 1.2.3. The notion of preadmissible places appearing in Conjecture F is a preliminary notion defined
in Definition 5.2.6. It is expected that, if II is not correlated to A in the sense of Langlands functoriality,
then all but finitely many finite places of E are admissible with respect to (4, II). For example, if there exist
finite places p, q of F' such that

(1) A has split multiplicative reduction at p,

2) TI, is unramified with Satake parameter of the form {—1,a7!,..., ot} satisfying oy +1} for
P 1 T g
every 1 <14 < r, and

Here 1 denotes the trivial automorphic character of GL; (AF).
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(3) TI, is either supercuspidal or an isobaric sum of a self-dual supercuspidal representation with a
quadratic character,
then there exists an effective constant N(F, A,II,,II;) depending on F, A,II,, and II, such that every finite
place A of E with underlying prime ¢ greater than N(F, A,II,,II,) is preadmissible with respect to (A,II);
see Lemma 5.2.7.

Theorem G. If Conjecture F holds, then Conjecture E holds.

Remark 1.2.4. In view of the Gross—Prasad conjecture for orthogonal groups [GP92,GP94,1110], Conjecture F
may be viewed as a natural analogue of Theorem D. It will be studied in the author’s forthcoming Ph.D.
thesis [Pen26] via orthogonal Shimura varieties and bipartite Euler system method, along the lines of the
argument for Theorem D (see §1.3). In particular, for F' = Q we expect to establish Conjecture F, and hence
also Conjecture E.

1.3. Strategy of proof. The main innovation of this paper is an extensive use of local and global seesaw
identities to deduce Theorem B (resp. Conjecture E) from Theorem D (resp. Conjecture F). The method
of seesaw has proved to be a very useful tool in theta lifting of automorphic representations, yet our work
seems to be the first to directly apply it to study arithmetic questions.

For simplicity, we restrict to the self-dual case and assume F = Q. Let r be a positive integer and A
be an elliptic curve over Q. By Newton Thorne [NT21], the odd symmetric power Sym? ' A is modular
and associated with a self-dual cuspidal representation ITy of GLa,(Ag). Rather than viewing II, as the
standard functorial transfer of a cuspidal automorphic representation on a special orthogonal group SOq;.11
as in previous work [Liul6, LTX 122, Zan24, Swe25], we regard Iy as a generic elliptic A-parameter for the
metaplectic group §132T in the Shimura—Waldspurger correspondence framework of [GI18]. In particular,
by Arthur’s multiplicity formula proved by Gan—Ichino [GI18], there exists a genuine cuspidal automorphic
representation oy of %QT(AQ) with A-parameter IIp.? Since the central critical value L(1,1Iy) is nonzero
(and IIj is tempered at every rational prime), the Rallis inner product formula [Yam14], together with local
conservation relations, yields a positive definite quadratic space Vg,41 of dimension 2r + 1 over QQ such that
the global theta lift of oy to O(Va,4+1)(Ag) is a nonzero cuspidal automorphic representation m with trivial
Archimedean components.

We use the seesaw diagram

Sp2r X SpQr O(V2T+2)
Spa, O(Var41) x O(V1),
where V1 = Qe is a 1-dimensional quadratic space with |le|| = 1, and Va,42 = Va,41 & V;. Fix a

sufficiently large rational prime ¢ and a nontrivial additive character ¢ of Q\Ag. Suppose we can find a
cuspidal automorphic representation oy of Sp,,.(Ag) such that the Fourier—Jacobi period integral

FT (G015 0) = / G0(9)e1(9)0(g; 6)dg
Sp2, (Q)\ Spy,-(Ag)

is nonzero on the pair (01,0¢) for some Schwartz function ¢, where (g; ¢) is the theta function. Then it
follows from the global seesaw identity that the theta lift of o1 to O(Va,12) is a nonzero cuspidal automorphic
representation 71, and the orthogonal Gross—Prasad period integral (1.1) is nonzero on the pair (mg, 7). If
we can further guarantee that

(1) m; has trivial Archimedean component,

(2) the Arthur parameter of 7 is of the form ITH 1 as in the statement of Conjecture F; and

(3) ¢ underlies a preadmissible place A of E with respect to (A4,II),
then Conjecture E follows.

The shape of 7 is determined by the shape of o1 via Prasad’s conjecture [AG17]. Fix a large prime p.
If the L-parameter of o;, contains a chosen 2r-dimensional irreducible local Galois representation ¢, as a

’In fact, we twist Ilp by a nontrivial quadratic character so that the quadratic space Var41 (defined below) satisfies
—disc(Vart1) ¢ Q%2
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subrepresentation, we would know II is either cuspidal or an isobaric sum of a self-dual cuspidal automorphic
representation and a quadratic Dirichlet character. Note that we cannot guarantee that II is cuspidal, because
there exist no irreducible self-dual local Galois representations of odd dimension greater than one (when p
is odd); see [Pra99, Proposition 4]. Condition (1) and (3) would follow if we can control the Archimedean
place of o1 and can choose ¢, with desired good properties.
To achieve these requirements, we prove a Burger—Sarnak type principle for Fourier—Jacobi periods on
the pair (Sps,., Sps,.), in the spirit of [BS91, HLIY, Pra07,Zhal4]. More precisely, suppose
(1) o1,p is a supercuspidal representation of Sp,,.(Q,) that is induced from a compact open subgroup such
that the pair (g ,,01,,) satisfies the Fourier—Jacobi case of the local Gan—Gross—Prasad restriction
problem:

(12) Homsp%(@p)(&o,p ® Wy, ® O1,p, (C) 7é 0,

where wy,, is the local Weil representation associated to 1.

(2) The contragredient of o1  is a holomorphic discrete series of Sp,, (R) with scalar lowest K-type of
weight (r+1,...,7r+1).

We show that there exists a cuspidal automorphic representation o; of Sp,, which globalizes o, and
01,00 simultaneously, such that the Fourier—Jacobi period integral on the pair (o71,0¢) is nonzero. The
local restriction condition (1.2) then follows from the (now established) local Gan—Gross—Prasad conjecture,
Prasad’s conjecture, and a local seesaw identity; see §4.

The local Galois representation ¢, used to enforce the pre-admissibility condition at some place A above
¢ will be constructed in Appendix A. Let ¢, : C = Q; be a fixed isomorphism which induces a place X of E.
We require ¢, to satisfy:

(1) ¢, is self-dual of orthogonal type;

(2) ¢, is residually absolutely irreducible;

(3) there exists an arithmetic Frobenius lift Frob, € Gal(Q,/Q,) such that the eigenvalues {a1, ..., a2}
of p(Froby,) are f-adic units and their reductions in F, avoid a prescribed finite subset of Fy;
moreover, a? # an? in Fy for any 1 < i # j < 2r.

The explicit construction is more complicated than we expected. Indeed, in the conjugate self-dual variant,
we need to split and distribute the analogous requirements between two distinct finite places.

We now turn to the conjugate self-dual setting and discuss the proof of Theorem D, which is another
main theorem. Following the bipartite Euler system arguments via level-raising congruences, pioneered by
Bertolini and Darmon for Shimura curves [BD05], we bound the Bloch-Kato Selmer group by constructing
global Galois cohomology classes that are deeply ramified at prescribed primes. These classes originate from
the cohomology of products of unitary Shimura varieties attached to (standard indefinite) unitary groups
U,, and U, via level-raising congruences, and are realized as the image of the diagonal cycle under the
Hecke-localized Abel-Jacobi map. Their ramifications are detected by relating them to unitary Gan—Gross—
Prasad periods on definite Shimura sets through the basic uniformization of the special fibers of the integral
models—this is the so-called first explicit reciprocity law.

Our argument follows [LTX'22] but requires modifications for the almost cuspidal setting. The results
of [LTX"22] do not apply verbatim, since several of their standing hypotheses are tailored to the cuspidal
case. For example, the computation of the Hecke-Galois module of the Shimura varieties is more delicate:
when 7 is a cuspidal representation of U, with base change BC(r) 2 II; = IT} B 1, then the 7>°-isotypic
part of the middle-degree (projective limit) cohomology of the Shimura variety

g (300007 @ (250) ) fur™

is a Qy[Gal(F/F)]-module isomorphic to either the trivial character or the Galois representation p%z’ NGE

determined by Arthur’s multiplicity formula. Here ¢, : C = Qy is a fixed isomorphism inducing a place A
of E. More subtly, our construction of II; via the Burger—Sarnak type principle fixes its local components
of finitely many places, but does not a priori control ramifications at the remaining places. To compensate,
we replace the notion of admissibility of [LTX"22] with a weaker variant adapted to the analytic rank-zero
situation.



As in [LTX*22], the geometric input has two parts: (i) the study of Tate cycles in the special fiber
of the semistable integral model of Shimura varieties attached to U,,; and (ii) an arithmetic level-raising
property for Shimura varieties attached to U,,. In our application, non-cuspidality is allowed only on the
odd-unitary side, while the even-unitary representation remains cuspidal. Moreover, the Tate cycle argument
works provided the Satake parameter at the given unramified place is “generic” enough.

Finally, under the hypotheses of Theorem D, we are not able to prove the vanishing of the larger Bloch—
Kato Selmer group

H}(F7 PTIg A @ le,A(n)),
although this is predicted by the Beilinson—Bloch—Kato conjecture. This limitation is intrinsic to our sim-
plifying conditions when applying the bipartite Euler system method: Let R” be a self-dual lattice in
Piig.x © Prp /\(n) For any very good inert place p of F, at which both arithmetic level-raising and the
Tate cycle conditions apply, we cannot show deep ramification of the Hecke-localized Abel-Jacobi image of
the diagonal cycle in the singular part of the local Galois cohomology
Hbl'ing(FP’ R’b/)‘m)v

for any m > 1. Indeed, under further conditions we impose, these cohomology spaces vanish; see §3.9. We
do not know how to circumvent this limitation.

Let us briefly summarize this article. In §2, we recall certain background materials related to automorphic
representations and Galois representations. In §3, we consider the conjugate self-dual Rankin—Selberg case.
In §§3.1-3.4, we collect certain background results from [LTX22] and extend them to the almost cuspidal
situation. In §§3.5-3.7, we compute the local part of the Abel-Jacobi image of the diagonal cycle. In §3.8, we
define the notion of admissible places in the almost cuspidal situation, and check in good situations that all
but finitely many finite places are admissible. In §3.9, we prove Theorem D. In §4, we collect the necessary
background results related to theta correspondence that will be used in §5. Finally, in §5, we apply the
Burger—Sarnak type principle and seesaw relation to prove the main theorems: Theorems A, B and C are
proved in §5.1, and Theorem G is proved in §5.2. In Appendix A, we construct certain (conjugate) self-dual
local Galois representations with good properties, which will be used in the Burger—Sarnak type principle
for Fourier—Jacobi periods.

1.4. Notation and conventions. In this subsection, we set up some common notations and conventions
for the entire article, including the appendix.

Notation 1.4.1 (Generalities).
e Let N={0,1,2,3,...} be the monoid of nonnegative integers and set Z; = N~ {0}. We write Z, Q,
R, and C for the integers, rational numbers, real numbers, and complex numbers, respectively.

e We take square roots only of positive real numbers and always choose the positive root.

e For any set S, we denote by 1g the characteristic function of S, and by idg : S — S the identity
map. We write id for idg if S is clear from context. Let #S be the cardinality of S.

e For any set X, let 1 € X denote the distinguished trivial element (this notation is only used when
the notion of triviality is clear from context).

e The eigenvalues or generalized eigenvalues of a matrix over a field k are counted with multiplicity,
i.e., by the dimension of the corresponding eigenspace or generalized eigenspace.

e For each rational prime p, we fix an algebraic closure Q, of Q, with residue field F,. For every

integer € Z,., we denote by Q- the unique unramified extension of Q, of degree r inside Q,, and
by Fpr its residue field.

e We use standard notations from category theory. The category of sets is denoted by Set. The
category of schemes is denoted by Sch.

e All rings are commutative and unital, and ring homomorphisms preserve units.

e If a base ring is not specified in the tensor operation ®, then it is Z.

e For a ring L and a set S, denote by L[S] the L-module of L-valued functions on S of finite support.
e For each square matrix M over a ring, we write M | for its transpose.

e Suppose f, G are groups, I' C Tisa subgroup, and L is a ring.
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— We denote by T'®P the maximal abelian quotient of T';
— For a homomorphism p : ' — GL,.(L) for some r € Z,, we denote by p¥ : I' — GL,(L) the
contragredient homomorphism, which is defined by the formula p¥ (z) = (p(z)")~!.
— For a group homomorphism p : I' = G and an element v € I that normalizes Lylet p¥: T — G
denote the homomorphism defined by p?(x) = p(yzy~1).
— We say that two homomorphisms p1, p2 : I' = G are conjugate if there exists an element g € G
such that py = gopyog~t.
For any positive integer n € Z., let p,, denote the finite diagonalizable group scheme over Z of n-th
roots of unity.

Denote by ¢ € Gal(C/R) the complex conjugation.
For each field k, we denote by char k the characteristic of k.

If G is a real Lie group or a totally disconnected locally compact group and « is an irreducible
admissible representation of G, we denote by 7 the contragredient of . We do not use 7 for the
contragredient of 7.

Notation 1.4.2 (Number fields). A subfield of C is called a number field if it is a finite extension of Q.
Suppose F' is a number field.

We denote by O the ring of integers of F'. We will not distinguish between prime ideals of O and the
corresponding finite places of F'; we denote by E*}“ the set of finite places of F', by ¥%° = Hom(F, C)
the set of infinite places (also called Archimedean places) of F', and by X = %0 U X% the set of
all places of F'.

For each finite set X of finite places of F, we write

!

o . . A0
AF’E T HUEZ Fv’ AR = Hq)EZF\E Fv7 AF o AF x (F ®Q R)

If F=Q, we omit Q from the notation.
Let F denote the Galois closure of F in C, and set Galr = Gal(F/F).

For each rational prime ¢, let ¢ : Galp — Z,° denote the f-adic cyclotomic character. If v is a finite
place of F', we continue to write ¢, for its restriction to Galp, .

We fix the following conventions. For each finite place v € Ef}n:

— write O, and F, for the completion of O (resp. F) at v;

— let K, denote the residue field, ||v|| := #&,, and write char x,, for the residue characteristic.

— we fix an algebraic closure F, of F, and an embedding ¢, : F<— F, extending F' — Fy; via ¢,
we regard Galp, := Gal(F,/F,) as a decomposition subgroup of Galr;

— for any map r : Galp — X, we write 1, := 7“|Ga1p,,§

— let I, C Galp, denote the inertia subgroup;

— fix an algebraic closure &, of k,, and identify Gal,, = Gal(&,/k,) with Galg, /I,

— fix ¢, € Galp, lifting the arithmetic Frobenius in Gal,,, and

— let Wg, denote the Weil group, and denote by Art, : F,X — Wﬁ‘? the local reciprocity map (also
called the Artin map), normalized so that uniformizers are sent to geometric Frobenius classes.

— for every automorphism 7 € Aut(F), denote by v™ the place defined by v7(z) := v(r~1z) for
every x € F.

For each finite set S of rational primes, set ¥x(S) := {v € X" : chark, € S}. If S = {p} is a
singleton, we write simply X (p) := Sr({p}) = {v € T : v|p}.

Two subsets X1, X of finite places of F are called strongly disjoint if {charx, : v € ¥} is disjoint
from {chark, : v € X5}

Notation 1.4.3 (Automorphic representations). Suppose F' is a number field. Let G be either the meta-

plectic double cover Sp,, of a symplectic group Sp,,, over F' or an algebraic group over F' whose central
connected component is a connected reductive group.

If G is a metaplectic group Sps,, then an automorphic form f on G(Ap) is called genuine if the

nontrivial element in ker (Spy,(Ar) — Spy,(Ar)) acts by —1 on f. For simplicity, if G is not
9



metaplectic, then every automorphic form on G(Ar) is called genuine. We denote by Ay(G(AF))
the space of genuine cusp forms on G(Af).
e Suppose 7 is an automorphic representation of G(A ).
— We write m, for its local component at v, for every place v of F.
— We denote by 7 the contragredient of 7.
— For any automorphism 7 € Aut(F’), we denote by 77 the automorphic representation of G(Ar)
satisfying n] = m,- for every place v of F.
— For any cuspidal genuine automorphic representation 7 C Ag(G(AF)), we write 7 for its con-
jugation.

1.5. Acknowledgments. I wish to thank Rui Chen and Jialiang Zou for many valuable discussions on the
theta correspondence. I am grateful to Yifeng Liu for sharing an earlier draft of [LTX"25]. I also thank
Weixiao Lu, Hang Xue, and Murilo C. Zanarella for helpful conversations, and Daniel Disegni, Zhiyu Zhang
for comments on an earlier draft. Finally, I am deeply indebted to my Ph.D. advisor, Wei Zhang, for his
invaluable guidance and encouragement.

2. AUTOMORPHIC REPRESENTATIONS AND (GALOIS REPRESENTATIONS

In this section, we introduce the automorphic representations relevant to us and their associated Galois
representations.

2.1. The conjugate self-dual case. In this subsection, we fix a positive integer N € Z,, an imaginary
quadratic extension F of a totally real number field F, and a relevant representation II of GLy(AF)
(see Definition 1.1.3).

If V is a Hermitian space of dimension N over F and 7 is a discrete automorphic representation of
U(V)(AF, ), let BC(m) denote the automorphic base change of 7 as defined in [LTX"22, Definition 3.2.3]
(see also Definition 4.4.2), which always exists by [CZ24, Theorem 2.1].

Proposition 2.1.1.
(1) For every finite place w of F, 11, is tempered.

(2) Suppose 11 is cuspidal. For every rational prime { and every isomorphism 1y : C =5 Qq, there erists
a semisimple continuous homomorphism

P, - Galp — GLN(@),

unique up to conjugation, satisfying that
F-ss 1-N
WD@ (pH,Lg|Ga1Fw) = lyTrecy (Hw ® |det| 2 ) y

for every finite place w of F, where recy is the local Langlands correspondence for GLy(F,,). More-
over, pf; ,, and pyp,, (1 — N) are conjugate.

(3) Suppose N is odd and II1 = II” B x is almost cuspidal. For every rational prime ¢ and every isomor-
phism vg : C = Qp, there exist semisimple continuous homomorphisms

prv ., - Galp — GLn-1(Qr), py., : Galp — GL1(Qy),
unique up to conjugation, satisfying that
F-ss b 1-N
WD, (pr,Le|Gale) & precy (Hw ® |det| 2 )
and
WD, (pX,Lg‘Ga]Fw)F_SS =1 (xw ® |det|#> o Art;l,

for every finite place w of F, where recy_1 is the local Langlands correspondence for GLy_1(Fy).
Moreover, prp ,, and p}’lb L((l — N) are conjugate. Let pr; denote the direct sum Galois representation

P11 1y B oy,

Proof. These follow from standard results, see for example [CH13, Theorem 3.2.3], [Carl2, Theorem 1.1]
and [Carl4, Theorem 1.1] O

(1-N)/2
0 .
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Lemma 2.1.3. Let £ be a rational prime with a fized isomorphism 1y : C = Qq. If N is odd, then pn,u(%)

is pure of weight 0 at every finite place w of F. If N is even, then pn,u(%) is pure of weight —1 at every
finite place w of F.

Proof. It suffices to show that pr,,,(¥52) (resp. pr,, (%)) is pure of some weight when N is odd (resp.
even). By [TY07, Lemma 1.4(3)] and Proposition 2.1.1, this follows from the fact that II,, is tempered for
any finite place w of F. O

2.2. The self-dual case. In this subsection, we fix a positive integer r and a totally real number field F.
Let ¥P2d denote the (finite) set of finite places of F' whose underlying rational prime ramifies in F.

Definition 2.2.1. An isobaric automorphic representation II of GLy,11(A ) is called a (self-dual) relevant
automorphic representation if
(1) T is self-dual in the sense that its contragredient IIV is isomorphic to IT;

(2) II has nontrivial central character x(_i)r+1p, where x(_1)r+1p is the quadratic character of Ap at-
tached to a quadratic extension F'(1/(—1)"+10) of F', where 0 is a totally positive element in F'*;

(3) Il has infinitesimal character (r — 1,7 — 2,...,1 —r); and

(4) TI is either cuspidal or an isobaric sum of a cuspidal automorphic representation of GLa,(Ar) and
a nontrivial quadratic character of F'*\AJ.

We fix a relevant representation IT of GLg,41(Ax), and denote by X! the smallest (finite) set of finite
places of F' containing ¥*2d such that II, is unramified for every finite place v of F not in X

Proposition 2.2.2.
(1) For every finite place v of F, 11, is tempered.

(2) For every rational prime £ and every isomorphism 1, : C =5 Qg, there exists a semisimple continuous
homomorphism

PO, * Galp — GL2r+1(@)v

unique up to conjugation, satisfying that
F- _
WDy (pr,., | Galp, ) ® 2y reca, 11 (Hu) ® |det| T) ,

for every finite place v of F', where reca,41 is the local Langlands correspondence for GLay11(Fy).
Moreover, pn,., and py,,(—2r) are conjugate.

Proof. These follow from standard results, see for example [CH13, Theorem 3.2.3], [Carl2, Theorem 1.1]
and [Carl4, Theorem 1.1] O

Definition 2.2.3. For each finite place w of F' not lying above ZJHF, let a(I1,,) denote the Satake parameter
of I, and let Q(II,,) denote the subfield of C generated by the coefficients of the polynomial

[ @-oecm.
aca(ll,)

We define the coefficient field (also called the Hecke field) of TI to be the compositum of the fields Q(II,,)
for all finite places w of F not lying above X!, denoted by Q(II).

Definition 2.2.4. We say a number field F C C is a strong coefficient field of Il if E contains Q(II), and
for every finite place A of F with underlying prime /¢, there exists a continuous homomorphism

PIL N - Galp — GL2T+1(E)\)

necessarily unique up to conjugation, such that for every isomorphism ¢, : C = Qy inducing the place \,
prx ®g, Qe and prr,, (see Proposition 2.2.2) are conjugate.

Remark 2.2.5. By the argument of [CH13, Proposition 3.2.5], a strong coefficient field of II exists.
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2.3. Galois theoretic arguments. Let F; be a subfield of R and F' be a quadratic extension of F.
contained in C that is not contained in R. We fix an odd rational prime ¢ that is unramified in F', and
consider a finite extension E)/Qy, with ring of integers O, and the maximal ideal A of O). We freely use
the notation of [LTX%22, §2]. For example,

e If T is a topological group and L is a Z,-ring that is finite over either Z, or Qp, then an L[I']-module
M is called weakly semisimple if M is an object of Mod (T, L), and the natural map M' — Mr is an
isomorphism.

e For each positive integer N € Z , we define the group scheme 9y := (GLyxGL1)x{1,c} withc? =1
and c(g, u)c = (ug~ ", ) for (g,p) € GLy x GL;. Denote by v : ¥y — GL; the homomorphism
such that v|gLyxcL, is the projection to the GL; factor and v(c) = —1.

e For an Oy-module M and an element x € M, the exponent of x is defined to be
exp, (z, M) := min{d € NU {co}|\%z = 0}.

e For a finite place w of F over ¢ and an object R in Mod(F,,, O,) that is crystalline with Hodge-Tate
weights in [a,b] where b and —a are nonnegative integers and b — a < £ — 2, let HL (F,,, R) denote
the Oy-submodule of H*(F,,,R) consisting of elements s represented by an extension

0—+Ro—Rs—+7Z;—0
in the category Mod(F.,, Z¢) such that Ry is crystalline. Here Ry is the underlying Z,[Galp, ]-module
of R.
e For a finite place w of F not over £ and an object R in Mod(F,,0y), we set Hj,.(F,,R) =
HY(If,,R)%~w  and denote by H. (F,,R) the kernel of the canonical map

Ow : HY(Fy,R) — HY . (Fu, R).

sing
H..(F,,R) is canonically isomorphic to H!(k,,, RFw).
We recall the following definition of Bloch-Kato Selmer groups from [BK90].

Definition 2.3.1. For an object R € Mod(F, E}), the Bloch-Kato Selmer group H}c(F7 R) attached to R is
defined to be

H}(F,R) := ker <H1(F,R)—> [I HiFu.R)x [[ H'(F..Req, Bcrys)>

wGE?f‘\EF(p) weX F(p)

Definition 2.3.2. For an object R € Mod(F, L), the (integral) Bloch-Kato Selmer group H}(F,R)
attached to R is defined to be the inverse image of H}(F ,R ® Q) under the natural map

H'(F,R) - HY(F,R® Q).
Moreover, for each m € Z, U {oo}, the (mod-A\") Bloch—Kato Selmer group H}’R(F, ﬁ(m)) is defined to be
the image of H}(F,R) under the natural map H'(F,R) — H'(F, ﬁ(m)).
To end this subsection, we study two “general image” conditions for integral Galois modules.

Lemma 2.3.3. Let F'/F, be a totally real finite Galois extension contained in R and a polynomial Z(T) €
Z[T). For each o € {0,1}, we take an object Ry € Mod(F, Oy with the associated homomorphism pq, :
Galr — GL(R,), together with a (1— «)-polarization = : RS = RY(1—a). We assume that tank Ry = ng =
2rg is even and rank Ry = ny = 2r; + 1 4s odd. Set R = Ro ® Ry and Z : R = RY(1). For every positive
integer m € Z., consider the following statement

(GIE, R, . 2): The image of the restriction of the homomorphism

(A7 2 ) Gali = Hay (O3 /A™) X Gy (OA/A™) X (O /A™)*
(see [LTXT22, Notation 2.6.1]) to Galp: contains the element (vo,71,€) satisfying
(a) P(&) is invertible in Ox/A™;

(b) for each o € {0,1}, v, belongs to GL,,_ (Ox/A™) x (Ox/A™)* x {c} with order coprime to £;
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(¢c) the kernels of (hy, —1)™, (hy, —1)™ and (hy, ® hs, — 1) (see [LTX 22, Notation 2.6.2]) are
all free over O\/A\™ of rank 1;

(d) for each o € {0,1}, h,, does not have an eigenvalue that is equal to —& in K.
Then (GI%{O’RLF%@) implies (GIR, g, rr.2) for everym € Z.
Proof. This is [LTX 22, Lemma 2.7.1]. O
Lemma 2.3.4. Let F'/F, be a totally real finite Galois extension contained in R and a polynomial (T €
Z[T). We take object R € Mod(F, Oy )s with the associated homomorphism p : Galp — GL(R), together with

a 1-polarization = : R¢ = RY(1). We assume that rank R = 2r. For every positive integer m € Z., consider
the following statement

(GIF pr o): The image of the restriction of the homomorphism
(Pl 2™+ Gali — %p (O /X™) x (O /A™)*
(see [LTXT22, Notation 2.6.1]) to Galp: contains the element (v, &) satisfying
(a) P(&) is invertible in Ox/A™;
(b) ~ belongs to GLar(Ox/A™) x (Or/A™)* x {c} with order coprime to £;
(c) the kernels of (h, — 1)*" (see [LTX 22, Notation 2.6.2]) is all free over O\/A\™ of rank 1;
(d) h~ does not have an eigenvalue that is equal to —§ in k.
Then (GI%{,F,7L@) implies (GIR g/ o) for every m € Z..
Proof. The argument of [LTX'22, Lemma 2.7.1] goes through. ]

3. THE CONJUGATE SELF-DUAL RANKIN-SELBERG CASE

In this section, we adapt the argument of [LTX"22] to prove Theorem D. While our setup is not identical
to that of [LTX'22], we align our notation with theirs whenever possible and record any deviations as they
arise. Fix a positive integer N > 2 and set r = L%J We work in the following setting.

Setup 3.0.1.
o Let F; C R be a totally real number field and let ' C C be a quadratic CM extension of F}.
e Denote by ¥ (resp. X9°) the set of Archimedean places of F' (resp. F ), with 7 (resp. 7.,) the
default one induced by the inclusion F' C C (resp. F} C R).
o Let Z‘j_ad denote the (finite) set of finite places of F; whose underlying rational prime ramifies in F.
e For any place v of Fiy, we set Op, := O, ®0k, Or and F, := F ®p, I,.

e For every place w of F' with underlying place v of F;, we identify Galg, with Galg, A NGalp (resp.
c(Galp, ,NGalp)c), if the embedding ¢, : F — F , induces (resp. does not induce) the place w.

3.1. Unitary Satake parameters and unitary Hecke algebras. We recall the notation of the coeffi-
cient field for an automorphic representation of GLy(AF). Let II be an irreducible relevant automorphic
representation of GLy (A ) that is cuspidal (resp. almost cuspidal) when N is even (resp. N is odd).

Definition 3.1.1. We denote by ZII the smallest finite set of (finite) places of F; containing X5 so that
II,, is unramified for every finite place w of F' not lying above ZE.

Definition 3.1.2. For each ring L, we define an abstract Satake parameter in L of rank N to be a multi-set
a consisting of N elements in L. For two Satake parameters «, @’ in L of dimension n and n/, respectively,
we can form their tensor product @ ® «’ in the natural way, which is an abstract Satake parameter of
dimension nn’.

Definition 3.1.3.
e For each finite place w of F' not lying above EE, let «(I1,,) denote the Satake parameter of II,,
which is an abstract Satake parameter in C of dimension N (see Definition 3.1.2), and let Q(II,,)
denote the subfield of C generated by the coefficients of the polynomial

[T (r-avil™")ecm

aEa(Hw)
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e We define the coefficient field of II to be the compositum of the fields Q(IL,,) for all finite places w
of F not lying above X!, denoted by Q(II),

e For each finite place v of Fy not in EE and inert in F, the abstract Satake parameter «(II,) at
v of rank N is defined in [LTX 22, Notation 3.14], which is an abstract Satake parameter in C of
dimension N.

Definition 3.1.4. Let v be a finite place of Fy inert in ', L be a ring, and P € L[T] be a monic polynomial.
e When N is odd, we say P is Tate generic at v if P/(1) is invertible in L.
e When N is odd, we say P is intertwining generic at v if P(— ||v]|) is invertible in L.
e When N is even, we say P is level-raising special at v if P(||v|]) =0 and P’(||v]|) is invertible in L.
e When N is even, we say P is intertwining generic at v if P(—1) is invertible in L.

Lemma 3.1.5. The coefficient field Q(II) is a number field.

Proof. We take a standard pair (V,n) (in the sense of Definition 3.2.1) such that BC(r) is isomorphic to II
and 7, is unramified for each finite place v of F; not in EE. Such a standard pair always exists by Arthur’s
multiplicity formula [KMSW14, Theorem 1.7.1]. For each finite place v of F, we denote by Q(m,) the fixed
field of the group
{r € Awt(C) : 1, ¢ C = m, }.

If v is not contained in X, then Q(BC(,)) equals Q(m,) by [ST14, Lemma 2.25 and Lemma 4.5]. Moreover,
the composite field of Q(,) for all finite places v not in EJHr is a number field by [ST14, Proposition 2.15].
Thus the assertion follows. O

Definition 3.1.6. We say a number field F C C is a strong coefficient field of II if E contains Q(II), and
for every finite place A of E with underlying prime ¢, there exists a continuous homomorphism

PIIN - Galp — GLN(E)\)

necessarily unique up to conjugation, such that for every isomorphism ¢, : C = Qy inducing the place X,
prx ®p, Q¢ and pr,, (see Proposition 2.1.1) are conjugate.

Remark 3.1.7. By the argument of [CH13, Proposition 3.2.5], a strong coefficient field of II exists. Moreover,
if N is odd and II is almost cuspidal of the form IT = II” B 1 where 1 is the trivial character of GL;(Af),
then for every strong coefficient E' with a finite place A, the homomorphism pyy 5 is of the form

prix = o ©ey V2

Definition 3.1.8. For any OF, -ring R, a Hermitian space over Op ®op, R of dimension N is a projective
OF ®0r, R-module V of rank N together with a perfect pairing

(—,—)V:VXV—>OF®0F+R

that is Op ®o,, R-linear in the first variable and (Op ®0o,, R,c ® id)-linear in the second variable, and
satisfies (z,y)v = (y, x)§, for any z,y € V. We write U(V) for the group of R-linear isometries of V', which
is a reductive group scheme over R.

We denote by V; := V @ Re the orthogonal direct sum Hermitian space where we set [le| = 1. If
[V — V' is an isometry of Hermitian spaces over R, we write f; : V4 — V} for the induced isometry of
Hermitian spaces over O R0k, R.

Definition 3.1.9.
(1) For a finite place v of F not in ¥, let Ay, denote the unique up to isomorphism Hermitian space
over O, of dimension N, and Uy, its unitary group over Op, ,. We define spherical Hecke algebra

TN,v = Z[UN,’U(O’U)\UN,'U(F+,U)/UN,’U(O’U):|‘

(2) For a finite set ¥4 of finite places of Fly containing El?fd, we define the abstract unitary Hecke
algebra away from 3, to be the restricted tensor product ring

Ty ’
Ty =) Trw
v

over all finite places of F; not in ¥, with respect to the unit elements.
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(3) The Hecke character ¢ry : T%’ — C attached to II is defined in [LTX*22, Construction 3.1.10]. By
[BG14, Lemma 2.2.3], ¢11 takes value in Q(II). Furthermore, ¢r1 takes values in Ogqry. In fact, if
we take a standard pair (V,m) (in the sense of Definition 3.2.1) such that BC(7) is isomorphic to
IT and 7, is unramified for each finite place v of F; not in EJHF. Such a standard pair always exists
by Arthur’s multiplicity formula [KMSW14, Theorem 1.7.1]. Then ¢y is identical to the spherical
Hecke character of 7, which is easily seen to be valued in algebraic integers.

3.2. Unitary Shimura varieties. Let V be a Hermitian space over F' of dimension V.

Definition 3.2.1.
(1) Recall from [LTX"22, Definition 3.1.11] that, for any finite set X of finite places of F. we have

(a) a category £(V)¥+ whose objects are neat compact open subgroups of U(V)(A%‘:E) and whose
morphisms are double cosets. There is also a subcategory &(V)>+ of &(V)¥+ consisting of the
same objects but allowing only identity double cosets; and

(b) a category ﬁ(V)sEp+ consisting of pairs (K, Ky), where K, (resp. K3) is an object of &(V)>+
(resp. R(Vy)¥+) such that K, is contained in K. There are the obvious functors

(=) s RIV)GF = R(V)H, (=) &V = &(V)™.
When X is the empty set, we suppress it from all the notations above.
(2) We say V is standard definite if it has signature (N, 0) at each real place of F.. We say V is standard
indefinite if it has signature (N —1,1) at 7, and (N,0) at other real places of F.

(3) For a discrete automorphic representation 7 of U(V)(AFp, ), we say (V,7) is a standard pair if one
of the following holds:
(a) V is standard definite, and 7°° appears in

lim C[Sh(V,X)).
HeR (V)

(b) V is standard indefinite, and 7> appears in

li “IHL (Sh(V, K)=, Q
f](e}ng) Ly et( ( ’ )F,QZ)7

for some rational prime ¢ with isomorphism ¢, : C = Q, and some i € N.

Proposition 3.2.2. Let 7 be a discrete automorphic representation of U(V)(AF,) such that (V, ) is a
standard pair. For every rational prime £ and every isomorphism vy : C =5 Qy, there exists a semisimple
continuous homomorphism

PBC(m) e @ Galp — GLy (Qy),
unique up to conjugation, satisfying that

F-ss 1N
(31) WDg (ch(ﬂ.),LAGale) = Ly reCn (BC(W)w (39 |det\ 2 ) 5

for every finite place w of F, where recy is the local Langlands correspondence for GLy(F,). Moreover,
Pf[,w and plvhz(l — N) are conjugate.

Proof. This follows from Arthur’s multiplicity formula [CZ24, Theorem 2.6] and standard results, see for
example [CH13, Theorem 3.2.3], [Car12, Theorem 1.1] and [Carl2, Theorem 1.1]. |

When V is standard definite (resp. standard indefinite), there are functors Sh(V,—) : K(V) — Set
(resp. Sh(V,—) : &(V) — Sch/F) of Shimura sets (Shimura varieties) attached to Respg, ,oU(V), as defined
in [LTX*22, §3.2).

Hypothesis 3.2.3. Suppose V is a standard indefinite Hermitian space over F' of dimension N, and 7
is a discrete automorphic representation of U(V)(Ap,) such that the functorial lift BC(n) is a relevant
automorphic representation of GLy(Ar) (see Definition 4.4.2). For every isomorphism ¢, : C = Qg, we
consider the Q[Galp]-module

W= (%) == Homgyvyaz. ) (Woo’ ling T8, (Sh(V, K7 Q) )
+ R(V)
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(1) If ppc(a),., is irreducible, then WN~1(7°°) is isomorphic to PRC(m) e
(2) If N is odd, BC(r) = II” B x is almost cuspidal, and pyps,, is irreducible, then WN=1(7>) is
isomorphic to either pf;, L OF Py, Moreover, if there is a finite place w of F over a place of F inert in

F' such that H';U is square-integrable, then there exists a unique irreducible admissible representation
750 of U(V)(AY¥) such that 7$° is isomorphic to 7> away from w, and WN=1(7>) @ WN-1(n$e)
is conjugate to pfj ,, as Galp-representations.

Proposition 3.2.4. Hypothesis 3.2.3 holds if N < 3 or F+ # Q.

Proof. The case for N = 2 is established by Liu [Liu2l, Theorem D.6]. The case for N = 3 and F; = Q
follows from the main result of [Rog92]. The case for N > 3 when F # Q will be established in a sequel
to [KSZ21], assuming the full endoscopic classification for unitary groups. Note that the full endoscopic
classification for such unitary groups is established by Chen-Zou [CZ24, Corollary 7.6]. (]

We recall the following definition of cohomological Hecke characters from [LTXT22].

Definition 3.2.5. Let N € Z_ be a positive integer, and ¥ a finite set of finite places of F; containing
ETd. Consider a homomorphism ¢ : ’]I‘i+ — k with x a field. We say ¢ is cohomologically generic if

H, (Sh(V, K)z, k) s =0

T Nker ¢
holds for any tuple (3/,,4, V,X) in which
e X' is a finite set of finite places of F containing 3,
e { is a nonnegative integer distinct from N — 1,
e V is a standard indefinite Hermitian space over F' of dimension N, and
e K is an object of R(V) of the form K = Ky, x Hvez‘}: o U(A)(O,) for some self-dual
AN

Hvezfgﬂr\zﬁr Op,-lattice A in V ®p, Ap,

3.3. Generalized CM type and reflexive closure. We denote by N[X%°] the commutative monoid freely
generated by the set 3%, which admits an action of Aut(C) via the set X%°.

Definition 3.3.1. A generalized CM type of rank N is an element
U= > r7eNZF
TEY o
satisfying r; + r,c = N for every 7 € £%. For such VU, we define its reflex field £y C C to be the fixed
subfield of the stabilizer of ¥ in Aut(C). A CM type is simply a generalized CM type of rank 1.

Definition 3.3.2. We define the reflezive closure of F, denoted by Figx, to be the subfield of C generated
by F' and the intersections of F for all CM types ® of F'. Set Fiax 4 = (Frax )=t

Definition 3.3.3. We say a finite place p of F is good inert if it is inert in F' and splits completely in
Fiax,+. By abuse of notation, we also denote by p the induced finite place of F'. We say a good inert place
p is very good inert if the following are satisfied:

(1) the underlying rational prime p of p is odd and unramified in F’;

(2) p is of degree one over Q, that is, Fiy , = Q).

Remark 3.3.4. A finite place p of F.. is very good inert in our sense if it is very special inert in the sense of
[LTX*22, Definition 3.3.4].

3.4. Preparation for Tate classes and arithmetic level-raising. We now work in the following setting.

Setup 3.4.1.
e Let II be a relevant representation of GLy (A ) that is cuspidal (resp. almost cuspidal of the form
II=T1I"@ 1) if N is even (resp. odd). Here 1 is the trivial character of GLi(AF).

e Let E C C be a strong coefficient field of II (see Definition 3.1.6).

e Let X% be a finite set of finite places of F. that contains XY (see Definition 3.1.1).
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e Let A be a finite place of E whose underlying prime ¢ satisfies ET“ NXp, (f) = @. We fix an
isomorphism ¢, : C = Qg that induces the place .

e Let Elj be a finite set of finite places of F; that are inert in F', which is strongly disjoint from Ei“i“
and satisfies £ 1 ||v|| (||v]|* = 1) for any v € k.

e Let 3 be a finite set of finite places of F'y containing 27" and Eli.

o Let ¢ ']I‘i+ — Ofg be the Hecke character attached to IT (see Definition 3.1.9).

o Let prp.» : Galp — GLx(E)) be the continuous homomorphism attached to II (see Definition 3.1.6).
In particular, pf , and pﬁy/\(l — N) are conjugate.

o Let 7y = (V%, A%, %) be a triple, where?
(1) V¢ is a standard definite Hermitian space over F' of dimension N (see Definition 3.2.1) such
that (V% ), is not split for v € X when N is even;
o . . o o0, 5N
(2) AY is a self-dual Hvez%: pin Op,-lattice in Vi ®@p, AR™
(3) K% is an object in R(V$,) of the form
*y= [T Fwx [ v@am)©.),
vED 4 vEZ?{}_\ZJr

satisfying that when N is even, (KR), is a hyperspecial maximal subgroup of U(VY,)(F,) for
v € X4\ (BT UXPin) and is a special maximal subgroup of U(V,)(F,) for v € £
such that
Ox[Sh(VR, KR)]

Tt N ker dry

is nontrivial when N is even.
e Let m € Z, be a positive integer.

e Let p be a very good inert place of Fy with the underlying rational prime p (see Definition 3.3.3),

satisfying®

(P1) p is strongly disjoint from X ;

(P2) ¢ does not divide p(p? — 1);

(P3) There exists a CM type ® containing 7., with (@g’2 = Q2 (we refer to [LTX 22, §3.3] for the
definitions).

(P4) If N is even, then Py, )(mod A™) is level-raising special at p; if IV is odd, then Pgrr,)(mod )
is Tate generic at p (see Definition 3.1.4);

(P5) Pyr,)(mod A) is intertwining generic at p.

In particular, we can and will apply the construction and notations in [LTX 22, §5.1] to the datum

(Vs {A% 4 Halp); cf. the beginning of [LTX*22, §5.2]. Denote by

m:= ’H‘i*uzm ®) N ker (']T%r fm, O — OE/)\>
and . Us
n:= ’]I‘N+ # (?) N ker ('H‘i+ KL O — (’)E/)\m)

sLUs
the two ideals of T NJrU it (p).

o Let T = (®, Wy, K§,1p, ) be a quintuple of data as in [LTX 22, §5.1] with Q7 = Q,2, which is
possible because p is very good inert.
o Let A}, be a lattice in V{ ®p F}, satisfying
- Ay, CAY, C p‘lA‘]’V’p, and

3Compared with [LTXT22, §6.1], we omit the assumption that (g ), is transferable when N is even, which is possible by
[LTX+25, Remark 8.2]

4Compared with [LTX122, §6.1], we omit the assumption (PI6), because it will be redundant for applications in view of
[LTX24, Lemma 4.2.4(2)].
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- pAy, C A;\},\; and A;\’,?;/pA;\mJ has length #
Let K3, denote the stabilizer of Ay, in U(Vyy ®F Fy), and set KR, , == K}, , ¥ quzF+ o~{pt Ka-

Let %n = (Vix, {Ay o }alp» KN > 3v) be an indefinite uniformization datum for V§;, which means
— V/y is a standard indefinite Hermitian space over F' of dimension N’
— for every place q of Fy lying above p other than p, A?V,q is a self-dual Op, -lattice in V' @p Fy;
— Ay, is an Op,-lattice in V' ®p Fy satisfying A’y , C (Aly,)" and (Aly,)Y/Aly, has length 1;
- Ky, = quEp+ (0) KN ,q» Where K}y . is the stabilizer of Aly ; in U(Vy ®F Fy) for each q €
Yr, (p); and
— jn VY ®g AP = Vi ®g AP is an isometry.
Set KR:° == (K})P, and K := KK° x Ko p-
Set X% := X;(V?V, KL:°) for meaningful pairs (X, ?) € {M, M, B, S} xi, 7,0,e,1}, and let (E9, dP7)
denote the weight spectral sequence abutting to the cohomology H%(My, RUO,(r)) from [LTX 22,
§5.9].

Assumption 3.4.2. The composite homomorphism Ti* Pn, Op — ky is cohomologically generic (see

Definition 3.2.5).

Assumption 3.4.3. The Galois representation pr x (resp. ppp ) is residually absolutely irreducible when
N is even (resp. N is odd).

Under Assumption 3.4.3, we get a residual representation pyy », which is unique up to conjugation and
(1— N)-polarizable in the sense of [LTX 22, Definition 2.5.3]. Then we obtain a continuous homomorphism

(3.2) ﬁl’L/\,—i- : Galp+ — gN(lﬁ)\)
from [LTX 22, Construction 2.5.4].

Definition 3.4.4. We say a standard pair (V, ) (see Definition 3.2.1) with dimp V = N is II-congruent
(outside X4 U X, (p)) if for any finite place v of Fy not in ¥ UXp, ({p,£}), m, is unramified, and the two
homomorphisms t;¢qBc(r),) and t¢Par,) from Ty, to Qy, taking values in Z, coincide in F,.

Lemma 3.4.5. Assume Assumption 3.4.3. Then the natural maps
H, . (Sh( s I KT ;,N)f,oA) s H, (Sh (Vi jﬂ{f@yq,w)f?(%)
m m

are both isomorphisms for every i € N.

Proof. We follow the proof of [LTX"22, Lemma 6.1.11]. We abbreviate Sh := Sh (V’N,jNﬂ{ﬁ,OG(I’LN).
By [LTX'22, Lemma 5.2.7] and the description of the weight spectral sequences (E?-¢,d?»?) in [LTX122,
Lemma 5.9.2] (for N odd) and [LTX"22, Lemma 5.9.3] for N even, it suffices to show that the first map is
an isomorphism for every ¢ € N. This is trivial if F, # Q, because in that case Sh is proper.

If Fi = Q, then the Witt index of V’y is 1. In that case, the Shimura variety Sh has a unique toroidal
compactification [AMRT75], which we denote by Sh. Since the choice of the relevant combinatorial data

is unique, Sh is smooth over F. As jNg{]Zi,OQ{Z’)’N is neat, the boundary 7 := Sh . Sh is geometrically
isomorphic to a disjoint union of abelian varieties of dimension N — 2. In particular, Hét(Zf, Or) is a

finite free Ox-module. Let 7> be an irreducible admissible representation of U(Vly)(A, ) that appears in
H. (Z7, Oy) N C. Then 7> extends to an automorphic representation 7’ of U(V’y)(Af, ) that is a
subquotient of the parabolic induction of a cuspidal automorphic representation 7y, of L(Ap, ) where L is
the unique proper Levi subgroup of U(V'y) up to conjugation.

We write L = U(Vy_2) X Resp/r, GL1, where V y_» is a standard definite Hermitian spaces of dimension
N — 2 contained in V (if N =2, U(V y_2) denotes the trivial group). Then we can write 7, = my_o K x
where 7y _2 is a cuspidal automorphic representation of U(Vy_2) and x is an automorphic character of
GL1(AF). In particular, BC(r') is of the form BC(n’) = BC(mny_2) B x B x~!. Then it is impossible
that the (semi-simplified) residual representation of ppc(r/) is conjugate to that of pr, as the latter has
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an irreducible component of at least dimension max(2, N — 1) (Note that 2 is even). Thus H (Z7, Ox)m
vanishes, because for any automorphic representation 7 such that 7°° appearing in H, (Z7, Ox)m R, .1 C,
e

PBC(r) should have (semi-simplified) residual representation conjugate to that of pr;. This implies that
Hét,c(Sh7 0)\)111 = Hét (Shv OA)m
is an isomorphism for every i € N. a

Lemma 3.4.6. Let (V,m) be a II-congruent standard pair. If Assumption 3.4.3 holds, then BC(r) is a
relevant automorphic representation of GLy(AF) (see Definition 1.1.3).

Proof. Let ppc(ny,, : Galp — GLy(Qg) denote the Galois representation attached to m (see Proposi-
tion 3.2.2). Since (V,7) is Il-congruent, by the Chebotarev density theorem, ppc(x),, admits a lattice
whose semisimplified residual representation pgc(sy,, IS isomorphic to pp \ @k, Fy, which is irreducible
(resp. the sum of an irreducible Galois representation with a character) if N is even (resp. odd). If N is
even, then ppc(r),, is irreducible, so BC(7) must be cuspidal. If N is odd, then ppc(r),., is either irreducible
or a sum of a character and an irreducible Galois representation. In the former case, BC() is cuspidal and
conjugate self-dual. Assume now that N is odd and BC(r) is not cuspidal. Then BC(7) must be the isobaric
sum of a conjugate self-dual cuspidal automorphic representation of GLy_1(AFr) and a conjugate self-dual
character x of GL1(AFp).

We now show that BC(w) is relevant. By the above argument, it suffices to show that BC(mw),, is
isomorphic to II,, for every infinite place w of F'. Let

H{y)(Sh) :==  lim Hfy (Sh(V,%),C)
KER (V)
be the L2-cohomology as defined in [Fal83, §6], It follows from (an analogue of) Lemma 3.4.5 that there are
isomorphisms
. —1yyi T~ e ~ T —1yyi a
g{elglrzv) ty Hi (Sh(V, K) 7 Qo)m = LgH(Q)(Sh)m = y(elgfr(lV) vy Hg (Sh(V, %K)z, Qp)m-

In particular, 7> appears in LgHz(é)(Sh). By Borel-Casselman’s decomposition of Héz)(Sh) [BC83], we see

that 7. is cohomological for the trivial representation of Resp, /oU(V). In particular, BC(r),, is isomorphic
to I, for every infinite place w of F'. O

Lemma 3.4.7. Let N be odd and assume Assumption 3.4.2 and Hypothesis 3.2.3 for N. Then for any
object Ky € R(V'\)P and hyperspecial mazimal subgroup KPS of UV )(Fy.p), there are isomorphisms

Hét(Sh( GV’g{ﬁ\?ng,p)f70/\)mgHét(Sh( §V7g{;€wﬁfp)F>O/\)m

Proof. As both (7{;\,’)) and 9{1’\}},‘1 are special maximal subgroups of U(V'y)(F4 ), the proof of [LTX"22,
Lemma 8.1.7] goes through, noticing that for every cuspidal automorphic representation 7’ of U(V’)(AF,)
appearing in either

Hét(Sh( 9\/7 g{;\eg{llv,p)Fv OA)m R0, @
or

Hét(Sh( 9\(7 g{;\eg{j\}flbp)Fu O)\)m ®(’)x @7
the semisimplified residual representations of ppc(x),., and pm,., are conjugate as F¢[Galr]-modules by the
Chebotarev density theorem. O

3.5. Tate classes in the odd rank case. In this subsection, we assume that N is odd, and work in the
setting of Setup 3.4.1.

Lemma 3.5.1. H?I(M}LV, Ox)m vanishes for every odd integer i.

Proof. We follow the proof of [LTX"22, Lemma 6.2.1]. If ¢ # 2r — 1, this follows from [LTX'22,
Lemma 5.6.2(1)]. We now assume ¢ = 2r — 1.
Suppose that 7°°P is an irreducible admissible representation of U(V?V)(A}o;p ) that appears in the
cohomology H?{“il(mg\,,(’);\)m ®p,.-t C. By [LTX*22, Proposition 5.6.4], we may complete 7°°? to an
e

automorphic representation 7 as in that proposition, such that (V$;,7) is a II-congruent standard pair, and
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that BC(m,) is a constituent of an unramified principal series of GLy (F}), whose Satake parameter contains
—p and —p~ ! (which is then different from «(Il,) in Fy by (P5)). On the other hand, the semisimplified
residual representations of pgc(r),,, and pm,,, are isomorphic. In particular, they have the same generalized
Frobenius eigenvalues in F, at the unique place of F over p. However, this is not possible by Arthur’s
multiplicity formula (see [KMSW14, Theorem 1.7.1]), Proposition 2.1.1(3) and Proposition 3.2.2. Therefore,

we must have H%’"_l(ML, Ox)m = 0. B

Proposition 3.5.2. Assume Assumption 3.4.2 and Hypothesis 3.2.3 for N. o
(1) Eg:ﬁl vanishes unless (p,q) = (0,2r), and Egi: is canonically isomorphic to HX (Mn, RUO(r))m,
which is a free Oy-module.

(2) The set of generalized Frobenius eigenvalues of the nA[GalFP2]—m0dule ngnr ®o, K 15 contained in
the set of roots of Pgm,)(mod A) in Fy.

(3) The Ox[Galg ,]-module Egif is weakly semisimple.

(4) The localization of the map V1 at m induces an isomorphism

Vi (BSZ) S ON[Sh(VE, KRl

)
a}‘pz

Proof. For (1), by Lemma 3.5.1, the same proof of [LTX 22, Lemma 6.2.2(3)] goes through.

Next we prove parts (2)-(4). Firstly it follows from the proof of [LTX 22, Theorem 6.2.3] and [LTX24,
Lemma 4.2.4] that V1 is surjective. By [LTX 22, Lemma 5.2.7] and part (1), there is an isomorphism
(3.3) B2 = HE (Sh (V! 3K K )7, OA(1)

m

of OA[Galsz]-modules. By Lemma 3.4.6, 3.4.5, Hypothesis 3.2.3 and Arthur’s multiplicity formula
[KMSW14, Theorem 1.7.1], there is an isomorphism

(3.4) HE (Sh (V38K Ky ) OA(r)) @0, Qe =2 @D (WY (x'))

/oo

@d(ﬂ,/oc)

of Q¢[Galr]-modules, where d(7/*) = dim (W’“)jNﬂ(;pg{&P; and the sum is taken over all admissible irre-
ducible representations 7> of U(V')(Af,) that is the finite part of some automorphic representation 7’
of U(V')(AF, ) satisfying (V’,7’) is a standard pair. Here we choose such a 7’ for each 7’ appearing in
the direct sum. For the proof of parts (2-4), we may replace E) by a finite extension inside Q; such that
WN=1(7/) is defined over E) for each ©'* appearing in the previous direct sum. For each such 7>,
WHN=1(7/°°) is conjugate to an irreducible subrepresentation of pfi,, by Hypothesis 3.2.3. Thus part (2)
follows from Equations (3.3), (3.4) and part (1).

For (3), we choose a Galp-stable Oy-lattice RV ~1(7/%) of WN~1(7/) for each 7/ appearing in the
previous direct sum. We claim that RN ~1(7/°) is weakly semisimple, which implies part (3) by [LTX*22,
Lemma 2.1.4(1)]. By (P4), we know pf; () is weakly semisimple, and

1 ]
Ga ]1<‘p2 Ga ]]:p2

dimy, prr A (7) =0, dimg, prp A (7) =1

If dimp, WN~1(7'*) is odd, then

dimpg, WIV_I(W"X’)GMEP2 > 1.
Thus RV ~1(7/°°) is weakly semisimple by [LTX*22, Lemma 2.1.5]. On the other hand, if dimg, W ~1(7'>)
is even, then BC(n') is almost cuspidal, and RN~ (') ®o, ky is conjugate to pps 5 as rx[Galp]-modules.

Thus RN ~1(7/%) is also weakly semisimple by [LTX*22, Lemma 2.1.5].
For (4): By the above discussion, it suffices to show

D d(n') < dimp, OA[Sh(V3, K3 )]m ®o, Ea,
where 7/% is taken over all those appearing in the previous direct sum satisfying dimg, W~ ~=1(7/*) is odd.
This assertion follows from Lemma 3.4.7 and Lemma 3.5.3 below. O
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Lemma 3.5.3. Let ©’ be an automorphic representation of U(V')(Af,) such that BC(n') is relevant. If N
is odd and BC(n') = II° B x is almost cuspidal, we further assume the following conditions.
e The local component m, is unramified with Satake parameter containing 1 exactly once.
e Set T={N—-1,N-3,...,3— N,1— N}, in particular Xr__(2) = arg(z)®x for some ay € J. Let
Ky us — C* denote the character that takes value —1 on the generator corresponding to ay €7
and takes value 1 on all other generators. Then w.. is isomorphic to the discrete series w"x (with
Harish-Chandra parameter (r,r —1,...,1—r, —r)jozzs defined in [LL21, Notation 3.14].
Consider the admissible irreducible representation m:=n, @ my ® (7')%* of U(V°)(AF, ) where
e 7, is the trivial representation of U(V® @p Fr_);
e Ty is an unramified representation of U(V°® @F Fy,) satisfying BC(m,) = BC(my,).
Then the automorphic multiplicity of m is 1.

Proof. This follows from Arthur’s multiplicity formula for tempered global L-packets; cf.[KMSW14, Theo-
erm 1.7.1]. O

3.6. Arithmetic level-raising in the even rank case. In this subsection, we assume that N is even and
work in the setting of Setup 3.4.1.
We recall the following definition of rigid residual Galois representations from [LTX 24, §3.6].

Definition 3.6.1. Let 7 : Galp, — 9n (k) be a continuous homomorphism satisfying
7 1 (GLy(ky) x GL1(ky)) = Galp, voT = ng/FJr?é*N

We say T is rigid for (X7, le) if the following are satisfied:
(1) For v € %", any lifting r : Galp, — ¥n(ka) with vor = ng/FJrE%*N is minimally ramified as
defined in [LTX™*24, Definition 3.4.8].

(2) For v € X%, the set of generalized eigenvalues of 7 (¢) contains the pair {||v||_N . |
once, where w is the unique place of F' over v.

(3) For v € Sp, (£), 7 is regular Fontaine-Laffaille crystalline as defined in [LTX*24, Definition 3.2.4].

v

(4) For a finite place of Fy not in X" UXY UXp, (¢), 7, is unramified.

lv]| "V 2} exactly

We state the following variant of the R=T theorem in [LTX"24] suitable for our case. We apply the
discussion of [LTX 24, §3] to the pair (7,x) = (ﬁn7/\7+,5%_N). Suppose T is rigid for (X7, 2). For each
? € {mix, unr,ram}, we consider the global deformation problem (see [LTX"24, Definition 3.6])

It = (F, g N X USE U{p} Uk, (0), {-@v}veET"UEﬂiu{p}uZ&(6))

where
e for v € ET“, 9, is the local deformation problem classifying all liftings of 7,;

e forve Zli, P, is the local deformation problem 2™ of 7, from [LTX"24, Definition 3.34];

e for v =p, 9, is the local deformation problem 2° of 7, from [LTX*24, Definition 3.34];

e for v € ¥p, (£), D, is the local deformation problem 2" of 7, from [LTX"24, Definition 3.12].
Then the global universal deformation ring RU is defined in [LTX 24, Proposition 3.7]. Set R” := RUZ"

for short. Then there are canonical surjective homomorphisms R™* — R and R™X — Rram of O, -rings.
We have the following corollary of the R = T theorem from [LTX"24].

Theorem 3.6.2. Assume Assumptions 3.4.2 and Hypothesis 3.2.3 for N. We further assume that £ >
2(N +1), Py (Equation (3.2)) is rigid for (X7, 3), and pralcaly,,, is absolutely irreducible.

o Let T""* denote the image of ']I‘i*u{p} in Endo, (OA[Sh(V, KR)]). Then there is a canonical
isomorphism R"™™ = T of nonzero local rings such that Ox[Sh(V,, KX)] is a nonzero finite free
module over R"™™".

o Let T™™ denote the image of ']I‘]Z\fru{p} in Endop, (H%Tfl(MN,R\I/(’)A)). Then there is a canonical
isomorphism R™™ = T of nonzero local rings such that Ox[Sh(V,, KX )] is a nonzero finite free
module over R™™,

21



Proof. For (1): This follows from [LTX*24, Theorem 3.38], except that when v € Zf}i ~ XWinthe level
group (K3 )y is a hyperspecial but may not be the stabilizer of a self-dual lattice in U(VQ)(F} ). However,
the proof of [LTX"24, Theorem 3.38] goes through.

For (2): By [LTX*22, Proposition 3.6.1], we know T*® is nonzero. Thus by [LTX'22, Lemma 5.2.7]
and the same reason as in (1), the assertion follows from [LTX 24, Theorem 3.38] (with (X7, £ ) replaced

by (S, 5 U {p}). o
Proposition 3.6.3. Assume Assumptions 3.4.2 and Hypothesis 3.2.3 for N. Assume further that ¢ >
2(N +1), Py (Equation (3.2)) is rigid for (37, 3Y), and Pualcaly,,, is absolutely irreducible.

(1) HE (M;\,, OA> is a free Ox-module for every i € Z. .

m
(2) Eg”& is a free Ox-module, and vanishes unless p+q=2r —1 and |p| < 1.
(3) The set of generalized Frobenius eigenvalues of the kx[Galr ,]-module H?ZT*I(M;V, OA(1))m ®0, K 18
contained in the set of roots of Pa(noyp)(pflT)(mod A) in Fy, and does not contain 1 or p?.

(4) The quotient modulo n of the map VY, induces an isomorphism
V) i P! (Ig, HE ™ (M, RUOA(r)) /n) = OA[SK(VZ,%3)]/n.

Here ¥ _q is the degree —1 term of the monodromy filtration.

(5) There is a natural isomorphism
F il (Ig,., HE ™! (My, REOA(1)) /n) = HY,, (@, HE ™! (My, RWOL(1)) /n)
(6) There exists a positive integer p € Z and an isomorphism

——(m)c @H
2 (Sh (Vi SN T H iy ) OA)) fn 2 (RT)
of Ox[Galp]-modules, where R is a Galp-stable Oy-lattice in pr A(r), unique up to homothety.

Proof. For (1)-(3): Using Theorem 3.6.2, the proof of [LTX 22, Theorem 6.3.4(1)-(3)] goes through.
For (6)-(7): By the proof of [LTX*22, Theorem 6.3.4(4)], these follow from [LTX*22, Proposition 6.4.1],
[LTX24, Lemma 4.2.4(2)] and Theorem 3.6.2. |

3.7. First explicit reciprocity law. We now work in the following setup.

Setup 3.7.1.

e Let n > 2 be an integer. Among {n,n + 1}, ng = 2r¢ (resp. n1 = 2r1 + 1) be the unique even (resp.
odd) number in the set {n,n + 1}. In particular, ro + 1 = n.

e Let IIj be a cuspidal relevant representation of GL,,, (A F), and let IT; be an almost cuspidal relevant
representation of GL,, (Ar) of the form IT; = IT} B 1, where 1 is the trivial character of GL;(Ar)
(see Definition 1.1.3).

e Let E C C be a strong coefficient field of II (see Definition 3.1.6).

e For each a € {0,1} and each finite place A of E, let pri, » : Galp — GL,_(E)) be the continuous
homomorphism attached to II, (see Definition 3.1.6). In particular, pf;  and py (1 — n,) are
conjugate.

Moyl

e For each a € {0,1}, let ¢, : Tfj * — Opg be the restriction of the Hecke character defined in
Definition 3.1.9.

We further assume that we are in the following setting.
Setup 3.7.2. Let (), Eli’l, Ei, ve,m,p, T, ¥ %) be a nonuple, where
e )\ is a finite place of £ whose underlying prime ¢ satisfies £11° N Xp, (¢) = @ and £ > 2(ng + 1).

) Eli’l is a finite set of finite inert places of Fy strongly disjoint from EEO U EEI (see Definition 3.1.1)
satisfying £ 1 [|v]| (||v]|* = 1) for any v € EK’I.

e X! is a finite set of finite places of F'y containing Zl_i’l and EEO U EEI.
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o VO =(V, Vo s AL AL L K KS,, K1) s a septuple, where®
(1) V¢ is a standard definite Hermitian space over F' of dimension N (see Definition 3.2.1), and

Vo = (V5)s, such that (V7, ), is not split for v € Elrl

. L ° o0, X!
(2) A is a self-dual HveE%"\ZL Op,-lattice in V} @p, Ap™";
(3) K, is an object in R(V7) and (Kg,, K5 1) is an object in R(V7}, ), of the forms
K= 11 #Dox 1] U@,
vexl vesfin
HKop= 1] *S)ex T UMD,
UGEIJr UEEF‘“\EI
Ko = ] Hdox  JI  U@540(00),
UGEIJr UEEF‘“\EI

satisfying
— (K)o C(K})y for v e Eﬂ_, and
— (Kz,)v is a hyperspecial maximal subgroup of U(Vy, )(F,) for v € XL \ (Eljﬁ’l u iy,
and is a special maximal subgroup of U(V?, )(F,) for v E Elrl

such that
Ox[Sh(V7, . K7)]

EI
T, Nker o,

is nontrivial.

e m € Z, is a positive integer,

e p is a very good inert place of F; with the underlying rational prime p (see Definition 3.3.3),
satisfying®

(PI1) p is strongly disjoint from X! ;

(PI2) ¢ does not divide p(p? — 1);

(PI3) There exists a CM type ® containing 7., as in [LTX122, §5.1] with Qg’ = Qp2 (we refer to

[LTX 22, §3.3] for the definitions).

(P14) Py, ,)(mod A™) is level-raising special at p, Pn, ,)(mod A) is Tate generic at p, and
Po (1o ,)@a(m, ) (mod A™) is level-raising special at p (see Definition 3.1.4);
(PI5) Pq, ,)(mod A) is intertwining generic at p for each o € {0, 1}.
In particular, we can and will apply the construction and notations in [LTX'22, §5.10] to the datum
(Vs {A7 4 }Hqlp). For each a € {0,1}, denote by

5o
e = Tor = @) ey (’JT N OEaOE/A>

and
5o
- TE YO () ) (T oyt o, OE%OE/X”>

the two ideals of ’]I‘nJrUEF*( ).

o 7 = (P, Wy, K}, 1, ™) is a quintuple of data as in [LTX 122, §5.1] with Qg’ = Q.
o ¥V = (A Ke K K KT KT '7{n+1 p) 18 an octuple of data as in [LTX 22,

n,p> n+1 0P At 1.ps Sep,py Son,pr Slsp o
Notation 5.10.13]. For each a € {0,1}, we set KP 1= (K )P, and K = KP x Kp

Na,P”

5Compared with [LTX*22, §7.2], we omit the assumption that (K )v is transferable when N is even, which is possible by
[LTX*25, Remark 8.2

8Compared with [LTX122, §7.2], we incorporate (PI7) into (PI4), and omit assumption (PI6) as it will be redundant for
applications in view of [LTX24, Lemma 4.2.4(2)].
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o % = (Vi in AN, o Yaips Vier1s dnt 1, {11 g Jaip) 18 a sextuple in which (V7,, 35, {A], i }qp) is an

indefinite uniformization datum for V¢ as in Setup 3.4.1, V] | = (V})s, jn+1 = (jn)s, and
Ani1,qg = (An,q)s for each qlp. Then (V7 1, jn+1, {A’n+1,q}q|p) is an indefinite uniformization datum
for V7 1. For each a € {0,1}, let K}, denote the stabilizer of Aj,_ . and set K}, =[], K. q-

For each o € {0,1}, we set X! := X;(Vo KE-°) for meaningful pairs (X,?) € {M,M,B,S} x

na’Y'n

{ sm0,0,7}, and let (“EP?,*dE) denote the weight spectral sequence abutting to the cohomology
HY (M, ,RYO,(r,)) from [LTX 122, §5.9].

Assumption 3.7.3. pm, . and prp  are residually absolutely irreducible.

Under Assumption 3.7.3, for each a € {0,1}, we get a residual representation Pri, x> Which is unique
up to conjugation and (1 — ng,)-polarizable in the sense of [LTX'22, Definition 2.5.3]. Then we obtain a
continuous homomorphism

(3.5) P, o+ Galr, = 9, (k))
from [LTX*22, Construction 2.5.4].

Assumption 3.7.4. Assumption 3.7.3 holds, pyy, » 4 is rigid for (EJHFU,ZILI) (see Definition 3.6.1), and
Galp(,,) is absolutely irreducible.

Plig,

Assumption 3.7.5. For each a € {0, 1}, the composite homomorphisms ’]I‘Ejin+ ﬂ) Op — k) is cohomo-
logically generic (see Definition 3.2.5).

In the following we will freely use the notation from [LTX"22, §7.2].
We apply the construction and notation of [LTX 22, §5.11], evaluating on the object (K. ?, K F)) €
R(V3)P x R(Vo,,)P. In particular, we obtain the blow-up morphism ¢ : Q@ — P from [LTX"22, Nota-

tion 5.11.1], and the localized weight spectral sequence (Ef fmo’ ) d? :f’mo ml)) abutting to the cohomology
H%(Q, R\I/O,\(n))(mmml) from [LTX122, (5.27)].

Lemma 3.7.6. Assume Assumptions 3.7.4, 3.7.5 and Hypothesis 3.2.3 for each N € {n,n+ 1}. Then
(1) For any (?9,71) € {o,e,1}2 and any i € Z, there is a canonical isomorphism

i (5071 . io [0 io (11
H (P, 0.() =~ @ ue (M,,0:) @0, H2 (M,),0))
(mp,mq) o 0 mo B my
10+i1=1
m Mod(Gal[sz s 0)\)&.
(2) Ez;:(qmo,ml) vanishes unless (p,q) € {(—1,2n),(0,2n — 1),(1,2n — 2)}, and canonical isomorphisms
—1,2n ~ —1,2r 0,2r
2,(mg,my) OE?;mo ’ ®o, 1E2,m11’
0,2n—1 ~ 0,2r9—1 0,2r
2,(mg,my) OEQ,‘“UO ®O>\ 1E27m11’
1.2n-2  ~ 0pl,2ro—2 0,2r
E27(m07m1) = OE2,mC? R0, 1E2,m117
in Mod(Galez ,O\e- In particular, HE (67 R\IIO,\(n))(mo ) vanishes unless i = 2n — 1.

(8) If E;%&;lm_f)(—l) has a nontrivial subquotient on which Galg , acts trivially, then i =1.

(4) For any (?9,71) € {o,e,1}* and any i € Z, HZ (Q?O’?l,(%\(z’)) is weakly semisimple.

(mo,m1)

(5) The canonical map H%7C(Q(C), O\) (mo,m1) — H?Z(Q(C), O)) (mo,m,) @5 an isomorphism for any integers
cand 1.

Proof. For (1), By [LTX'22, Lemma 5.6.2], Lemma 3.5.2(1) and Lemma 3.6.3(1), we know that
. —7
H'e (M;:!,OQ is a free Oy-module for every (o, iq, %) € {0,1} x N x {o,e {}. Thus (1) follows from

ma
Lemma 3.4.5 and the Kiinneth formula.

For (2), Using Lemma 3.5.1, Propositions 3.5.2, 3.6.3(2) and Lemma 3.4.5, the proof of [LTX'22,
Lemma 7.2.5(2)] goes through.
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For (3), by inspecting the proof of [LTX*22, Lemma 7.2.5(3)], the assertion follows from Proposi-
tion 3.5.2(2) and Proposition 3.6.3(3).

For (4): Using Proposition 3.5.2, the proof of [LTX 122, Lemma 7.2.5(4)] goes through.

Part (5) follows from part (1), Lemma 3.4.5 and [LTX 122, Lemma 5.11.3(3-5)]. O

By Lemma 3.7.6(2), we obtain a coboundary map

Alq: Z2(Q") = H' (@, B2 (QRYOLM) 1))
By our choice of K and (K¢

s> K1), we obtain a finite morphism

MP (V:u g{sop) —P
Denote by Py, the corresponding cycle, and by Qg the strict transform of Py, under o, and Qs the special
fiber of Qsp.
We recall the construction of potential map from [LTX"22, §5.11]. For each r € Z, set
* r (O r (A1
B'(Q,0) =ker (5 : 0¥ (@7, 00(n)) » 18 (@7, 0(n)).

and

B,—+(Q,0,) := Coker (513 :H;(TLJFT_Q) (Q(l), Ox(n+7— 2))

g (Q(O) An+r— 1)) >7
where §; is a linear combination of pullback maps and §; is a linear combination of pushforward maps; see

[LTX*22, p. 262]. Denote by B"(Q, 0)° and B,,(Q, Oy)o the kernel and cokernel of the tautological map

B"(Q,05) = Bn-1(Q, Ox),
respectively. By [Liul9, Lemma 2.4], the composite map

H" Y (@7, 00— 1) S Y (@Y 00— ) 25 13 (@ 0a(m)

factors through a unique map B, (Q, Ox)o — Bn(Q, 0))°. Set
Galp 2

Cn(Qa 0/\) = (Q OX) 3 Cn(Q7 O/\) = Bn(Q7 O/\)(()}alp .
Then we obtain a potential map
A" On(Qa O)\) — Cn(Qvo)\)
In particular, the cycle Qg gives rise to a class cl(Qsp) € C™(Q, Oy).

Proposition 3.7.7. Assume Assumptions 3.7.4, 3.7.5 and Hypothesis 3.2.3 for each N € {n,n+1}. There
is a canonical isomorphism

smg (Qp27H2n ! (Q R\IJOA( )) (mo,m1 ) =~ Coker A?m07m1)’
under which 0 AJq(Q,) is identified with the image of cl(Qsp) in Coker A7,

(mo,my)"
Proof. Using Lemma 3.7.6, the proof of [LTX*22, Proposition 7.2.7] goes through. ]
For each a € {0,1}, we set Sh}, := Sh(V], ,j, K PK]_ ). By [LTX*22, Construction 5.11.7 and
Remark 5.11.8], we obtain a map
V:C0"(Q,05) = Ox[Sh(V, , K} )] ®o, OxA[Sh(V, , K} )]

Under Assumption 3.7.3 and Assumption 3.7.5,
2n
Hét ((Sh;zo XSpec F Sh/nl )F’ O)‘) (mg,mq)

vanishes. This follows from [LTX 22, Lemma 5.2.7], Lemma 3.4.5, and the Kiinneth formula. In particular,
we obtain an Abel-Jacobi map

AJ 2 2" (St Xspecr SH,,) = Y (FHE (S, Xspee s SH, )7, Oa(n)
25

(mo,my ))



and its natural projection
AJ: 7" (Sh,, Xspecr Shy, ) — H' (F,HZ' " ((Sh,, Xspee r Shy,, )7, O0A(n)) /(ng,n1)) .
Let Sh{, denote the cycle given by the finite morphism Sh(V7,, j, KGPK), ) — Sh;,. Xspee 7 Shy,,

Proposition 3.7.8. Assume Assumptions 3.7.4, 3.7.5 and Hypothesis 3.2.3 for each N € {n,n + 1}.
(1) The map V descends modulo (ng,n1) to an isomorphism

V /(no,my) © Coker A" /(ng,n1) — OA[Sh(V5 , K )] ®0, OA[Sh(V; K )]/ (no,n1).
(2) The Hecke operator (p+1)Ip ,®Tp
OA[Sh(V5,, K5 )] @0, OA[Sh(Vy,, Ky, )1/ (o, )
denote its inverse by T°. Moreover,
V/(no,m) (Op AJQ)(QF,) = T Lsn(ve s,),

where 1gpve ) i the pushforward of the characteristic function along the map Sh(Vy, Kg)) —
Sh(Vy, K?2) x Sh( o K1)

(3)

acts invertible on

€XPx (3plocpA7J(Sh; )7 smg (FP7H§?71 ((Sh;’b X Spec Sh;l)f’o)\(n)) /(1’10,1’11)))
— expy, (1Sh(vo #e,)s Ox [S(VE,, K2,) x Sh(VE,, K?,)] /(no,nl)).

n?

Proof. For (1): We follow the proof of [LTX 22, Theorem 7.2.8(2)]. Firstly, by Proposition 3.7.6(1), Propo-
sition 3.5.2(4) and Proposition 3.6.3(3), the map V (4, n,) is surjective. Thus it remains to show that the do-
main and the target of V /(n, s,) are isomorphic as Oy-modules. By the proof of [LTX 22, Theorem 7.2.8(2)],
this follows from Proposition 3.7.7, Lemma 3.7. 6(2 3), Proposition 3.5.2(4), and Proposition 3.6.3(4, 5).
For (2): p+ 1 is invertible in Oy by (P12); I, , ®T;, , is invertible by (PI4, P15), [LTX*22, Proposi-
tions B.3.5(1), B.4.3(2)] and [LTX24, Lemma 4.2.4(1)];
For (3): This follows from part (2) by the proof of [LTX 22, Corollary 7.2.9]. O

3.8. Admissible places. We now work in the setting of Setup 3.7.1.

Definition 3.8.1. We say that a finite place A € 11, with underlying prime ¢, is an admissible place (with
respect to (IIp,II;)) if the following hold:”

(L1) €2 2(no +1);

(L2) ' does not contain places lying above /;

(L3) The residual representations pyy,  and P\ are both absolutely irreducible. Fix Galp-stable Oy-
lattices Rg C pr,.a(r0) and R} C PH‘;,A(TI) (which are unique up to homothety), together with
isomorphisms Zy : Ry — Ry (1) and =} : R} = (R})Y. Set Ry := R, @ Oy and Z; = =} @ id :
R & RY.

(L4-1) One of the following holds:
(a) The image of Galr in GL(Ry) contains a nontrivial scalar element;
(b) Rg is a semisimple £ [Galp]-module and Hom,, (g1, (End(Ro), Ro) = 0;

- / rom Lemma 2.3.3 holds for I’ = Figy 4+ an = —1;
L4-2 GIF“@’RO’le L 2.3.3 holds for F’ = Figy, d2(T)=T?-1,;

(L5) The homomorphism pry, . is rigid for (2°, ) (see Definition 3.6.1), and Pry.alGalp,,, is absolutely
irreducible; and

sioyusi
(L6) The composite homomorphism Ty} N ﬂ) Op — k) is cohomologically generic (Defini-

tion 3.2.5) for every a € {0,1}.

To end this subsection, we give several examples where it is known that all but finitely many finite places
A of E are admissible.

7Compared to [LTXT22, Definition 8.1.1], we omitted assumption (L3) because we will not consider the Bloch-Kato Selmer
group of the Galois representation pri,,x ® oy A-
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Lemma 3.8.2. Suppose that
(1) there exists an elliptic curve Ag over Fy such that for every finite place \ of E,

prie,n = Sym™ T H, (A7, Bl Galy

(2) there exists a good inert place p of F. (see Definition 3.3.3) such that Ay has split multiplicative
reduction at p, and Hﬁ,p is a supercuspidal B-avoiding good representation (see Definition A.1.2) for

1+1 1i3 1+(2r—-1) }

B={=pll. el lIpl - [Ipll
with respect to any isomorphism vy : C = Q where ¢ is not a rational prime underlying p. Then all but
finitely many finite places A of E are admissible (with respect to (Ily, 1) ).

Proof. We show that every condition in Definition 3.8.1 excludes only finitely many finite places of E. By
[Ser72, Théoreme 6], for sufficiently large prime ¢, the homomorphism

Paclcal : Galp — GL (Hi (A5, Fy))

is surjective. So we may assume that ¢ is large such that this is the case.

For (L1) and (L2), this is trivial.

For (L3), Py, » is clearly absolutely irreducible, and the condition that Pris A is absolutely irreducible
only excludes finitely many finite places A of E by [LTX"24, Theorem 4.5.(1)] and condition (2).

For (L4-1), condition (a) always holds.

For (L4-2), because A has split multiplicative reduction at p, Il , is the Steinberg representation by
[Roh94, §15]. Thus (L4-2) excludes only finitely many finite places A of E, by the same reasoning as in the
proof of [LTX 22, Lemma 8.1.4].

For (L5), by [LTX*24, Corollary 4.2], the condition that py, 5 , is rigid for (X7, &) excludes only
finitely many finite places A of E. The second condition is clearly satisfied.

For (L6), for each o € {0,1}, we choose a finite place w, of F such that II, .,  is unramified with
Satake parameter {aq 1,...,0an, }. By Proposition 2.1.1, |ay ;| = 1 for every 1 < i < n,. Thus, for every
sufficiently large rational prime ¢, aq,;/aq, # ||w|| for 1 < i # j < n, even in F,. Suppose ) is a finite place
of E lying above £. We fix an isomorphism ¢, : C = Q, which induces A. Applying the Chebotarev density
theorem to the representation pr; \ © & of Galp, we see that there are infinitely many finite places wy, of F
that are of degree 1 over Q satisfying that

e Il is unramified with Satake parameter {ay, ;, ...

.} in which ¢(ay, ;) is an ¢-adic unit for

every 1 <1i < ng, and
o wlay;/ag ;) # |wgll € Fp for 1 <i# j < nq.
Then it follows from [YZ25, Theorem 1.5] that (L6) holds for A. O

Lemma 3.8.3. Suppose that
(1) there exists a very good inert place p of Fy (see Definition 3.3.3) such that Iy, is Steinberg, and
HbLlg is unramified with Satake parameter not containing 1; and
(2) for each oo € {0,1}, there exist a finite place wo of F' such that Iy 4, is supercuspidal;
Then all but finitely many finite places A of E are admissible (with respect to (IIp,I1;) ).

Proof. We show that every condition in Definition 3.8.1 excludes only finitely many finite places of E.
For (L1) and (L2), this is trivial.

For (L3), this follows from [LTX"24, Theorem 4.5.(1)] by (2).

For (L5), this follows from [LTX"24, Theorem 4.8] by (2).

For (L6), this follows from the same reasoning as in the proof of Lemma 3.8.2.

For (L4-1), this follows by the same reasoning as in the proof of [LTX 22, Lemma 8.1.4].

For (L4-2), this follows by the same reasoning as in the proof of [LTX 22, Lemma 8.1.4]. g

3.9. Proof of Theorem D. The following lemma is crucial for the proof of Theorem D, which is essentially
the solution of the Gan—Gross—Prasad conjecture for unitary groups [JR11,Zhal4, BPLZZ21,BPCZ22].

Lemma 3.9.1. We work in the setting of Setup 3.7.1. If L(3,IIy x IIy) # 0, then there exists
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e a standard definite Hermitian space V, of dimension n over F, together with a self-dual
4 eusoust

Hvezf};ﬂ\(zzouzzl)OFv'lattice Ay in V) ®p, Ap, , and we set Vy = (V7)) and

A%-H = (A%)u-

e objects Ky, € R(Vy) and (K, Ky 1) € R(V;))sp of the forms

sp’Y'n
K= T (&K x II U(A7)(0y).
vesousT vesir(sfous)

K= JI (Ks)wx II U(A7)(On),

vexiousit vesfir(sfous)
ntl = H (Krg1)v X H U(A711)(0y),
vexous vesiny (zous!t)
satisfying
— KS,, C K, forve P UST and
— K3, is hyperspecial mazimal subgroup of U(V5, ) (Fy) forv e ZE“ ~ 221,
such that

> fls)#0

SESh(V,Ks,)

for some f € Og [Sh(V;,, Ky,)] [ker ¢1,] ®o, Op [Sh(Vy, Ky )] [ker ¢u,]. Here we regard f as a function

niy’
on Sh(V7, Kg,) via the map Sh(Vy, Kg)) — Sh(V], Kp) x Sh(V] 11, Ky q).
Proof. In view of Remark 1.1.4, this follows from the direction (1) = (2) of [BPCZ22, Theorem 1.1.5.1].

Note that since our II,, and II,1; are relevant representations of GL,(Ar) and GL,11(AF), respectively,
the Hermitian space in (2) of [BPCZ22, Theorem 1.1.5.1] is standard definite. O

Theorem 3.9.2. We work in the setting of Setup 3.7.1. Assume there is a finite place w of F lying

above a place of Fy inert in F such that (Hg)w is square-integrable, and assume Hypothesis 3.2.3 for each
N € {n,n+ 1}. If the central critical value

1 1

L(=,1Iy) - L(=

(5:110) LG5,

does not vanish, then for all admissible finite places A of E (with respect to (Ily,I1;) ), the Bloch—Kato Selmer
group H} (F, pr, A(r0)) vanishes.

I, x IT%)

Proof. The proof is a variant of that of [LTX 22, Theorem 8.2.2]. By Lemma 3.9.1, we may fix the choices
of Vo, Vo LAY AD K K, Ky, ) in that lemma such that

> fs)#0

s€Sh(Ve,K2)

for some f € O [Sh(V%O,g{ﬁo)} [ker ¢, ] ®o,; O [Sh(V%l,g{gl)} [ker ¢, |-

Let X be an admissible finite place of E with the underlying rational prime ¢. We choose a Galp-stable
Ox-lattice R in priy (7o), unique up to homothety, with a fixed isomorphism Zg : Rg — Ry (1); and a
Galp-stable Oy-lattice R} in Pz, A (r1), unique up to homothety, with a fixed isomorphism = : R} = (R})V.
Set Ry := R? @ Oy, with a fixed isomorphism = : R; = RY. We write R :== Rg ® Ry and = := Z, ® =; :
R = RY(1). Define two nonnegative integers mpe; and my,; as follows.

(1) Let myper denote the largest nonnegative integer such that

> fs) €A Og

s€Sh(Vy,,%3,)

for every f € O [Sh(Vy,, Ky,)] [ker ¢1,] ®0, Op [Sh(VS,, Ky )] [ker ¢, ].

ng? nyo
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(2) We choose a standard indefinite Hermitian space V,, over F of rank n;, together with a fixed
isomorphism U((V7, )>°) = U(Vy]) of reductive groups over Af, . In particular, we obtain the
Shimura variety Sh(V,,, X ). By Hypothesis 3.2.3, there is an isomorphism

HE (Sh(Viny, K ) Ea(r1)) [ ker ém, & (RS @0, By)®
of E)[Galp]-modules for some positive integer p; € Z,. We fix a map
HZ (Sh(Va,, Ke )7 Oa(r1)) / ker ¢, — (R)®H

of 0,[Galp]-modules whose kernel and cokernel are both Oy-torsion. Then we denote by my,¢ the
smallest nonnegative integer such that both the kernel and the cokernel are annihilated by A\™at,
We start to prove the theorem by contradiction, hence assume

dimp, HE (F, priy a(ro) > 1.

Tate a sufficiently large positive integer m which will be determined later. By Lemma 2.1.3, we may apply
[LTX*22, Proposition 2.4.6] by taking ¥ to be the set of places of F lying above ZJHFO. Then we obtain
a submodule S of H}’R(F, Rio(m)) that is free of rank 1 over O,/A™~ ™= such that loc,|s = 0 for every
finite place w of F' lying above 25[_0. We now apply the discussion of [LTXT22, §2.3] to the submodule

S C HY(F,Ro"™). By (L4-1) and [LTX*+22, Lemma 2.3.4], we obtain an injective map

95 : Gal(FS/FE(vn)) — HOIH@A (57 Rio(m))

whose image generates an Oy-submodule containing AR Home, (S,E(m)), which further contains
Ao Homo, (S, Ro' ™) by [LTX*22, Lemma 2.3.3] and (L3) (Here t—w and tr, are reducibility depths
defined in [LTX"22, Definition 2.3.2, Proposition 2.3.3]). By (L4-2) and Lemma 2.3.3, we may choose an
element (7p,71,¢) in the image of (ﬁgz?)\,ﬁg?,))\,ggm))
In particular, the natural inclusion

(3'6) (Rio(m))hvo s (E(m))hvo ®h~,y

is an isomorphism of free O, /A™-modules of rank 1. By [LTX*22, Proposition 2.6.6] (with my = mx and
rg = 1), we may fix an (S, v)-abundant element ¥ € Gg, (see [LTX"22, Definition 2.6.5]).
By the Chebotarev density theorem, we can choose a y-associated place (see [LTX 22, Definition 2.6.3])

|Galp,,, . satisfying conditions (a-d) in Lemma 2.3.3.

+

wim) of Fj(Lm) satisfying ¥,,(m) = ¥ and whose underlying prime p of F'; (with its underlying rational prime
p and an isomorphism ¢, : C = @, under which 7, and p correspond) is a very good inert place satisfying
(PI1)-(PI5) and
(PI6) the natural map
HZ‘I (Sh(vnl ’ ‘7{21 )f& O)\ (Tl)) - Hz*:l (Sh(vru ) ‘7{31 )fa 0)\ (rl))

BLOUS U, (p) ker ¢rr,
T,

is an isomorphism.

We can choose a quintuple .7 = (&, W, K¥, 1, @) as in [LTX 22, §5.1] with ij = Q,2, an octuple
Ve = (A

n,p?
as in [LTX*22, Notation 5.10.13], and a sextuple % as in Setup 3.7.2. We are now working in the setting of
Setup 3.7.2 with

A, SPt=g, B =slousl v = (VO Ve A A K K, K y), m, b T, VU

N ker gf)nl

A:1+1,p;‘7{. ‘7{7.1+1,p7‘7{. s K, K ‘7{:2+1,p)

n,p? Sp,p? < n,p’ 7 Sp,p’?

specified.
By the definition of mper,

(3.7) expy (1Sh(vg,5<gp), Ox [Sh(VZOJ{ZO) X Sh(Vle,[]{gl)} /(ﬂo,ﬂl)) 2> M — Mper,

where ls}l(vgwg(gp) is the pushforward of the characteristic function along the map Sh(VfL,ﬂfsp) —
Sh(V3, K2) x Sh(VS, 1, K3 ).

n’
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We claim that there exists an element ¢; € H(F, Ri(m)’c) such that
(3.8) exp, <8plocp (c1), Hsmg(Fp7 RO )) > M — Mper — Miat,
and for every finite place w of F' not lying above EJHFO U{p},

(3.9) locy (c1) € HL (Fy, Ro™).

We first prove the theorem assuming the existence of such ¢;. Fix a generator s; of the submodule
S C H})R (F, R(m)) We also identify Rg (M€ ith (Ro (m)) (1) via the polarization Zy. We now compute
the local Tate pairing (s1,c1),, (see [LTX 122, Equation (2.2)]) for every finite place w of F.
e Suppose w is lying above ZEO. Then loc,,(s1) vanishes by our choice of S. Thus (s1,¢1),, = 0.
e Suppose w is lying above X g, (£). Then by (L2), (Ro)g is crystalline with Hodge-Tate weights in
[—70,70 + 1]. Thus locy(cy) is in HL (Fy,, R"™) by [LTX*22, Lemma 2.4.3(2)] and (L1). By (3.9),
[LTX 22, Lemma 2.2.7] and (L1), ™ (s1,¢;), vaniehes, where 0y = A"t C O, is the different
ideal of E) over Qq.
e Suppose w is not lying above 21}_0 UXp, (£) U{p}. Then by (L2), R¢ is unramified. Thus loc,(c1)
is in Hrlls(FWE(m)) by [LTX"22, Lemma 2.4.3(1)]. By (3.9) and [LTX"22, Lemma 2.2.3|, (s1,¢1),,
vanishes.

e Suppose w is the unique place lying above p. Then
expy (10Cw(81),Hrlls<Fw,R70(m))> >m—myg — tg,
by [LTX 22, Proposition 2.6.7]; and
expy ((51,€1)y, » Ox/A™) > M — Mper — Miag — Mx — TR,

by (3.8) and [Rub00, Proposition I.4.3.(ii)].
Therefore, as long as we take m such that m > mper + Miag + my + tr, + Mmair, we will have a contradiction

to the relation
Z <51701>w =0.

wEXY
The theorem is proved assuming the claim.
We now consider the claim on the existence of ¢;. It follows from (L5), (L6) and Proposition 3.6.3(6)
that there exists an isomorphism

Yo HZ ™ (Sh (Vi 3 K2 7K, ) 7> OA(10)) /”OH(RO(m)C)@M

no,p

of 0,[Galp]-modules, for some positive integer pg € Zy. It follows from Lemma 3.4.7 that there exists an
isomorphism
Hzrl (Sh(vm y 9(0 )F? OA)“H = Hggl (Sh(V’nl s Jna (g{po>‘7{/ )F7 O/\)m1

ni,p

of Oy[Galp]-modules. Thus, by (PI8) and the definition of mj,, we may fix a map
HQ”(Sh(V’lajm(U{”")?{' )7 Oa(r1))

ny /7 ny,p

T U Uz, () - (R(f)@”l
’]I‘n;r N ker oy,

of O)[Galp]-modules whose kernel and cokernel are both annihilated by A™at.
To continue, we adopt the notational abbreviation prior to Proposition 3.7.8. By Lemma 3.4.5 and the
Kiinneth formula, we obtain a map

= — —(m),c Duop
T = To @ Ty : H2 1 ((Sh)y, Xspee & SH,, ), O(n)) /(g m1) — (R( ) ) o

of O)[Galp]-modules whose kernel and cokernel are both annihilated by A™=t. Consider the class

AJ(Sh{,) € H' (F,HZ' ' ((Sh;,, Xspec# Shy,, )7, Ox(n)) /(ng,n1)) .
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Here Shl,, denotes the cycle associated to the finite morphism Sh(V},, jnKSP K, ) = Shy, Xspec # Shy, . It
follows frm Proposition 3.7.8(3) and (3.7) that

(3.10)  expy (Fplocy AJ(Sh,), Hie (Fo, HZ ' ((Shy,, Xspee # Shy,, )7, Oa(n)) /(no,11))) = m — mper.
For each 1 <14 < pg and each 1 < j < puq, let

o T [=(m),c\ Prop
Toy t HE ((Sh), Xspee s SH), ), Oa(m) /(no ) 5 (R4) 7

—(m).c\ PHoML —(m),c Grop
:(RO( )’) @<R0®R§ )

pr j =—(m),c

— Ry

(m),c

denote the composition of T with the projection to the (i,5)-th Rg -factor, and set
cij = H(F, T, ;)(AJ(Sh,,)) € H'(F,Ro ™).
Then it follows from (3.10) and (3.6) that
Oyl *(m)&)) _ _
122};0 ér}ag);l exp), (8p10cp (cij)s Hging (FP,RO > M — Mper — Miat-
Thus we obtain (3.8) by taking ¢; = ¢; ; for some i, j. On the other hand, by (L6),
Hy = He " ((Sh),, )%, 0x(n))

My

is a finite free Oy-module for each o € {0,1}. By Lemma 3.4.5 and the Kiinneth formula, the following
composition map

1®pr; T —(m),c DM r, —=—(m),c
Ay @0, K 2 Ay G0, Ry ® 03— oty 1 (R™°) 7 25 Re ™

is equal to Ti,j, where pr;, pr; are obvious projection maps for every 1 < i <y and every 1 < j < p;. Thus

ci,j = H1 (F7Tl’j)(AJ(Sh;p))

sing
Let w be a finite place of F'. By Lemma 3.4.6, 2.1.3 and Hypothesis 3.2.3, 7 ®p, 74 is pure of weight —1
at w. Thus
HI(FUM% ®OA %)
vanishes if w is not lying above £, and
H}(Fu“% ®Ok %) = H;t(va% ®O,\ %ﬁl)

if w is lying above £. Then it follows from [NN16, Theorem 5.9] and the proof of [Nek00, Theorem 3.1(ii)]
that AJ(Sh{,) is contained in H}(F,%% ®o, #1). Hence

H'(F,(1®pr;) o (1@ T1))(AJ(Shy,)) € Hy(F, /),
by definition of Bloch—Kato Selmer groups. Therefore, for every finite place w of F' not lying above ZE" U{p},
locy (¢ ;) = Hl(Fu“ pr; oY) (locw (Hl(F, (1® prj) o(l® Tl))(AJ(Shép))))

(m),c

is contained in H. (F,, Ro ) by [LTX"22, Lemma 2.4.3] and the fact that Sh], has good reduction at w.
The claim is proved. O

4. THETA CORRESPONDENCE

In this appendix, we review some results on automorphic representations and theta correspondence that
will be useful to us.

Let K be a local or global field of characteristic zero, and let K7 be an extension field of K with degree at
most two. Let ¢ denote the element in Gal(K;/K) ith fixed field K. We fix a nontrivial additive character
v of K (resp. of K\Ak) if K is local (resp. global). For an element d € K*, let x4 denote the quadratic
character of K (resp. of K*\A%) corresponding to the quadratic extension K (v/d)/K via local (resp. global)
class field theory when K is local (resp. global).
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4.1. The groups. Suppose € € {£1} is a sign and W is a finite dimensional vector space over Kj of
dimension n equipped with a nondegenerate e-Hermitian c-sesquilinear form

<—,—>WIWXW—>K1.
We denote by G(W) the group of elements of GL(W) preserving the form (—, —)y:
GW)(R) = {g € GL(R) : {gv, g}y = (v, w)y}.
If K; # K or € = 1, let the discriminant disc(W) and Hasse-Witt invariant ¢(W) of W be normalized as

in [Pen25, §2.1]. In particular, if K3 = K and € = 1, and W has an orthogonal basis {v1,...,v,} with
(v, v;) = a; € K* for 1 <14 <mn, then

disc(W) = (—1)n(n=1/2 H a;.
i=1

For notational simplicity, we define disc(W) = 1 and ¢(W) = 1 if K1 = K and e = —1. Then the neutral
component of G(W) is a reductive group over K. There are several cases to consider:

(1) If K1 = K and € = 1, then G(W) = O(W) is an orthogonal group. If dimW is odd, then G(W)
is split (resp. non-quasi-split) if (W) = 1 (resp. ¢(W) = —1). If dimW is even, then G is split
if disc(W) = 1,¢(W) = 1, G is non-quasi-split if disc(W) = 1,¢(W) = —1, and G is quasi-split but
non-split if disc(W) # 1;

(2) If K1 = K and e = —1, then G(W) = Sp(W) is a symplectic group;

(3) If Ky # K, then G(W) = U(W) is a unitary group. G(W) is quasi-split except when dim W is even
and ¢(W) = —1, in which case it is non-quasi-split.

If K1 = K and € = 1, the determinant map on GL(W) restricts to a nontrivial quadratic character det

of G(W) = O(W).
If K1 = K and ¢ = —1, we will consider metaplectic group Mp(W), which is the unique nonsplit C!-
covering of G(W) = Sp(W):
1 — C' — Mp(W) — Sp(W) — 1.
Here C! is the group of norm-1 elements in C*. We can write Mp(W) = Sp(W) x C!, with multiplication
law given by
(91,21) - (92, 22) = (9192, 2122 - (91, 92))
for g1, 92 € Sp(W) and 21,29 € C!, where c is the 2-cocycle of Sp(W) in {41} given in [RR93]. Mp(W) has
a natural subgroup
Sp(W) = Sp(W) x {#1} € Mp(W),
which is a nonsplit double cover of Sp(W). Let ww 4 denote the Weil representation of Mp(W) with respect
to 1, defined via the Heisenberg group attached to the symplectic space (W,2(—,—),y). We continue to
write ww y for its restriction to §1;(W) When K is global, we simply write ww for the Weil representation.

These classical groups arise naturally in Howe’s theory of reductive dual pairs in the symplectic group.

We recall some basic facts about these reductive dual pairs and the splitting of the metaplectic cover over
them.

Let W be a vector space over K7 equipped with nondegenerate e-Hermitian c-sesquilinear form

(= —)w :WxW = Ky,
and let V be a vector space over K7 equipped with nondegenerate (—¢)-Hermitian c-sesquilinear form
(= =)y : VXV =K.

We distinguish the following cases:
e (Case U) K; # K, W is Hermitian and V is skew-Hermitian, or W is skew-Hermitian and V is

Hermitian;
e (Case SO1) K1 = K, W is symplectic and V is orthogonal with dim V" odd;
e (Case O1S) K1 = K, W is orthogonal with dim V' odd and V is symplectic;
e (Case 02S) K7 = K, W is orthogonal with dim V' even and V is symplectic;
e (Case SO2) Ky = K, W is symplectic and V is orthogonal with dim V" even.
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We collectively refer to Cases O1S and O2S as Case OS, and refer to Cases SO1 and SO2 as Case SO.
Let G and H be algebraic groups over K defined by

_ JG(W) in Cases U, OS, SO2 - G(V) in Cases U, 025, SO
~ | Sp(W) in Case SO1, "~ |Sp(V) in Case O1S .

Let W =W ®k, V, regarded as a vector space over K and equipped with a symplectic form

tI‘Kl/K (<_7 _>W ®K1 <_7 _>V) .
Then (G(W),H(V)) is a reductive dual pair in the symplectic group Sp(W), and there is a natural map
t:Gx H—GW)x HV)— Sp(W).

4.2. Local Gan—Gross—Prasad conjecture. In this subsection, we assume that K is a non-Archimedean
local field. We will focus on the group G. Fix a nontrivial additive character ¥ of K, and set m := dim(W).

If G is isomorphic to a metaplectic Sp,,, (K), then we say an irreducible admissible representation 7 of
G(K) is genuine if the nontrivial element in ker (Sp%(K) — Sp2n) (K) acts by —1. For simplicity, if G is
not metaplectic, then every irreducible admissible representation of G(K) is called genuine.

Let II(G) denote the set of all irreducible admissible genuine representations of G(K). Denote by ®(G)
the set of equivalence classes of representations ¢ of Wy, x SLa of dimension

m—1 in Case U

m in Case SO1
m+1 in Case SO2
m —1 in Case O1S
m in Case 02S

which are
conjugate self-dual of sign (—1)™~! in Case U
self-dual of sign 1 such that det(¢) = xw in Case O2S
self-dual of sign 1 such that det(¢) =1 in Case SO1
self-dual of sign — € such that det(¢) =1 otherwise
Elements of ®(G) are called L-parameters for G. We denote by ®iemp(G) the subset of equivalence classes

of tempered L-parameters, that is, the set of ¢ € ®(G) such that ¢(Wg) is precompact.
Recall that there is a canonical local Langlands reciprocity map (depending on 1 in the metaplectic case)

recy : II(G) = ®(G);

see [GS12, Art13, KMSW14, AG17,CZ21,1sh24]. For any 7 € II(G), 7 is tempered if and only if rec(r) is
tempered. For ¢ € ®(G), we denote by II, the inverse image of ¢, called the L-packet of ¢ on G.
We now state the tempered Bessel case of the local Gan—Gross—Prasad conjecture.

Theorem 4.2.1.

(1) Suppose we are in Case U. Set Vi := V @ L(_yyamv where L(_yyamv is the Hermitian space of
dimension 1 and discriminant (—1)Y™V. For any ¢ € ®emp(U(V)) and ¢y € Promp(U(V3)), there
exists

e a unique pair (V*°, Vﬁ.) in which V* is a Hermitian space over K1 with dimV*® = dimV and
V}; =V L(_l)dimv; and
® a pair of irreducible admissible representations (m,m) € Iy (U(V'*®)) x I, (U(V?)),
satisfying
HomU(V.)(ﬂ & Wﬁ,@) # 0.

(2) Suppose we are in Case SO. Set Vi := V © L(_yyamvi1 where L(_jjamv+1 is the quadratic space
of dimension 1 and discriminant (—1)3™V+1 Let Vi) (resp. V1) denote the unique even (resp. odd)
dimensional element in the set {V,V;}. For ¢g € Premp(O(Vy)) and ¢1 € Premp(O(V1)), there exist

o a unique pair (Vi, Vi*) in which V' is a quadratic space with dim(Vy) = dim(Vp) and disc(Vy) =
diSC(Vo) and V* =V @ L(_l)dimv+1; and
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e a pair of irreducible admissible representations (my,m1) € Iy (O(Vi')) x Iy, (O(V*)),
satisfying
Homo(v(;)(ﬂ'o & e, (C) #0.

Proof. Case U is established by Beuzart-Plessis [BP14, BP15,BP16]. Case SO is established in [AG17, The-
orem 5.6], extending the Gross—Prasad conjecture in the special orthogonal case established by Waldspurger
[Wall0, Wall12, Wal12b, Wall2c]. Note that the assumptions on local Langlands correspondence for orthog-
onal groups in [AG17, Theorem 5.6] are established in [Art13,Ish24] for odd special orthogonal groups and
in [CZ21, Theorem 4.4] for even orthogonal groups. |

4.3. Local theta lifts and Prasad’s conjectures. In this subsection, we assume that K is a local field.
We fix a nontrivial additive character 1) of K and a pair of characters x = (xw, xv) of K;* such that

(1) In Case U, xw|xgx = X%’f‘w and xv|xx = X‘}g’fﬂv;

(2) In Case SO, xw is trivial and xv = Xaisc(v)-

(3) In Case OS, xw = Xaisc(w) and xv is trivial.
Note that x§, = X‘jvl and x{, = X‘_,l.

Using v and x, the natural map

LWw,v : Gx H— Sp(W)
can be lifted to a homomorphism
iw,v,x,» — Mp(W);

see [Kud94] and [HKS96, §1].

Let wy, denote the Weil representation of Mp(W) with respect to 1. Using this splitting Zw,v,y,, We
obtain a representation

WIW,V,p,x = WW,p O LW, V4, x

of G x H, called the Weil representation of G x H (with respect to the auxiliary data above).

For any irreducible admissible genuine representation = of G(K), the maximal w-isotypic quotient of
wWw, v,y is of the form

X eW,VJJ),X(ﬂ—)?

where Ow v () is either zero or a finite length smooth representation of H(K) [Kud86]. Let Oy v,y 5 (7)
denote the maximal semisimple quotient of Oy v,y (7). We have the following standard properties.

Proposition 4.3.1.
(1) Ow vy () is either zero or irreducible.
(2) If K is non-Archimedean and m is supercuspidal, then Ow,v,y (7) is either zero or irreducible.
(3) If K =R and at least one of G and H is compact, then Ow, v,y () is either zero or irreducible.

Proof. The first two follow from the Howe duality conjecture [Kud86, MVW87, How89b, Wal90, GT16]. The
third one is due to Howe [How89). O

The following theorem is known as the local conservation relation (also called the local theta dichotomy);
see [HKS96, KR05,Min12, GS12,SZ15].

Theorem 4.3.2. Suppose K is non-Archimedean and we are in Case U or SO. If V' is another nondegen-
erate (—e)-Hermitian vector space over K1 with

dimV +dim V' =2(dim W + 2 — [K; : K]), €(V') #€(V)
and moreover disc(V') = disc(V') in Case SO, then for any irreducible admissible genuine representation m

of G(K), exactly one of the two theta lifts Ow v,y (T) and Ow,v: 4 (T) s nonzero.

To conclude this subsection, we recall Prasad’s conjectures relating local theta correspondence and local
Langlands correspondence.

Theorem 4.3.3. Suppose K is non-Archimedean and 7 is an irreducible admissible representation of G.
(1) Suppose we are in Case U and dimV = dim W. Then there is a unique (—¢)-Hermitian space V*®
over Ky with dim(V'*®) = dim(V') such that Ow,ve 4 (7) is nonzero. Moreover,

recye (Ow,ve (7)) = recw (m) ® x;—l)(W.
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(2) Suppose we are in Case U and dimV = dim W + 1. If O, ve 4 (7) is nonzero, then

recys (Gw,ve .y (7)) = (recw (1) © X3 xw) & xw-
(8) Suppose we are in Case U and dimV = dim W — 1. If recy (7) contains xv as a subrepresenta-
tion, then there is a unique (—e)-Hermitian space V® over Ky with dim(V*®) = dim(V') such that
Ow.ve () s nonzero. Moreover,

recyy () = (recys (Ow,vp,x (1)) @ Xy xv) © Xv
(4) Suppose we are in Case SO1 and dimV = dim W + 1.Then there exists a unique quadratic space
Ve over K with dim(V*®) = dim(V) and disc(V*) = disc(V) such that Ow, e 4 (7) is nonzero.
Moreover,
recys (Ow,ve (7)) = recw (7) @ xv -
(5) Suppose we are in Case O1S and dimV = dim W — 1. Then there exists a unique element € € {£1}
such that O,y (1 @ detW=9/2) is nonzero. Moreover,

recy (Ow, v,y (T ® det=9/2)) = recy (7) ® xw.
(6) Suppose we are in Case SO2 and dimV = dim W + 2. If Ow v,y (7) is nonzero, then
recy (Ow, v,y (1)) = (recw (7) ® xv) & 1.

Here 1 is the trivial representation of Wi .
(7) Suppose we are in Case O2S and dimV = dim W —2. Ifrecw () contains the trivial representation 1

as a subrepresentation, then there exists o unique element € € {£1} such that Ow v,y (r@det(179/2)
is nonzero. Moreover,

recy (1) = (recy (Ow, v,y (T Q@ det(lfe)/Q)) ® xw) 1.

Proof. (4)-(6) are established by Gan—Ichino [GI16]. (4-5) are established by Gan-Savin [GS12] (cf. [AG17,
Theorem B.8]). (6)-(7) are established by Atobe-Gan [AG17, Theorem 4.4]. O

4.4. Global theta lifts. In this subsection, we assume that K is a global field, and set F' := K, F} := K;.
We fix a conjugate self-dual automorphic character p of Ay, that satisfying p,(2) = z/v/2% for every infinite
place u of I and z € C*. - -

If G (resp. H) is isomorphic to a metaplectic group Sps,,,, then the covering Sp,,, (F,) — Sps,, (Fy) splits
over the hyperspecial maximal compact subgroup XK., for all but finitely many finite places v of F. So we
may regard K, as a compact open subgroup of Sp,,, (F,). In this case, the restricted tensor product

[T'cF)

with respect to the family {,}, contains @,us as a central subgroup. Denote by G(Afr) (resp. H(AF))
the quotient of the above restricted tensor product by the central subgroup

{(#v) € @v o sz =1}

If G (resp. H) is not isomorphic to a metaplectic group, we simply denote by G(Af) (resp. H(Ap)) the
adelic points of G (resp. H).

Similarly, for all but finitely many finite places v of F', the metaplectic covering Mp(W,) — Sp(W,,) splits
over the hyperspecial maximal compact subgroup K,. So we may regard K, as an open compact subgroup
of Mp(W,). Then we define Mp(W)(A r) as the quotient of the restricted tensor product

H ! Mp(W,)

by the central subgroup
{(z0) € H(Cl : z, = 1 for all but finitely many U,sz =1}

The covering Mp(W)(Ar) — Sp(W)(A r) canonically splits over the subgroup Sp(W)(F). So we can regard
Sp(W)(F) as a subgroup of Mp(W)(AFg).
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We fix a convenient set of parameters for the theta correspondence: a nontrivial additive character 1 of
F\AF and a pair of automorphic characters x = (xw, xv) of K1 \AIX<1 such that

(]_) In Case U’ Xw = M(1+(*1)dimw)/2 and Xy = X(lJF(*l)dimV)/Q;

(2) In Case SO, xw is trivial and xv = Xadisc(v)3

(3) In Case OS, xw = Xaisc(w) and xv is trivial.
Note that x§, = X;Vl and x5, = X‘_,l. The pair (x, ) fixes a lifting

Iwy = @’zmvmw :G(Ap) x H(Ap) — Mp(W)(Ap)

of
wy =) tw,.v, : G(Ap) x H(Ar) — Sp(W)(Ar).

The global Weil representation wy := &/ wyy, 4, Of

[T Mp(w,)

factors through a representation ww of Mp(W)(A ). Using the lifting Zyy,y, we obtain a representation
ww,v = Ww O ZW,V

of G(Ar) x H(AF). If W is skew-Hermitian, we pair it with the 1-dimensional Hermitian space V' = Fje
with ||e|| = 1, and let wyy denote the restriction of wyy v/ to G(AR), called the Weil representation of G(Ar).
For each place v of F, we denote by wyw, ., the local component of wyy, which is a representation of G(F,).

Let L be a Lagrangian subspace of W. Then the Weil representation wyy,y is realized on the space
of Schwartz functions S(L(Ar)). For each Schwartz function ¢ € S(IL(AF)), define a theta function on
G(Ap) x H(Ap) by

Owy(g:hi¢) = Y wwy(g. o), (g,h) € G(AF) x H(Ap).

z€L(F)

Let m C Ao(G(AF)) be a genuine cuspidal automorphic representation of G(A ). Then the theta lift Ow,v ()
is defined to be the span of functions on H(AFp) of the form

Ow,v(p;¢) : h— ©(9)0w,v (9, h; #)dg,
G(F)\G(AF)
for ¢ € m and ¢ € S(L(AF)). Here the measure dg denotes the Tamagawa measure on G(F)\G(Ap) if G
is not metaplectic, and an arbitrary fixed Haar measure otherwise. Since theta functions are of moderate
growth and ¢ is rapidly decreasing, these integrals converge and define automorphic forms on H(AF).
We recall the following compatibility property between global and local theta lifts.

Proposition 4.4.1. Let 71 C Ag(G(AFr)) be a genuine cuspidal automorphic representation of G(Ar).
If 0 := Ow,v(m) is contained in the space of square-integrable automorphic forms on H(Ap), then it is
irreducible and isomorphic to the restricted tensor product ®. 0w, v, p, x. (7). If moreover o is cuspidal,
then ™= Oy w (o).

Proof. The first assertion follows from [KR94, Corollary 7.1.3]. The second follows from [GRS93, Proposition
1.2). O

To end this section, we discuss relation between global theta correspondence and functorial lifts. We
first recall the notion of Arthur parameters attached to discrete automorphic representations of orthogonal
groups.

Definition 4.4.2. Let © be an automorphic representation of H(Ag) contained in the space of square-
integrable functions on H(Ap). There is a standard L-homomorphism
0  In Cases U or O1S or SO2
¢:"H — " (Resp,/p(GLN)p ), N=dimV+<1 In Case 029

—1 In Case SO1
36



as defined in [Mok15, §2.1] in Case U (the standard base change embedding) and in [Art13, §1.2] in Case SO
or OS. For each finite place v of F such that H, is unramified, £ induces a map £, from the set of isomorphism
classes of irreducible unramified representations of SO(V)(F,) to that of GLy(F) ®F F,). A functorial lift
of 7 is defined to be an automorphic representation II of GLy (A f,) that is a finite isobaric sum of discrete
automorphic representations such that II, is isomorphic to FL(x,) for all but finitely many finite places v of
F such that 7, is unramified. A functorial lift FL(7) exists in Cases 025, U, O1S, SO1, and SO2; see [Art13],
[KMSW14, Theorem 1.7.1], [GI18, Theorem 1.1], [Ish24, Theorem 3.16], [CZ24, Theorem 2.1}, respectively.
By strong multiplicity one for GLx(Ap,) [PS79], this functorial lift is unique up to isomorphism, denoted
by FL(x), and we will also call it the Arthur parameter of w. To align with the literature, in Case U we also
refer to FL(m) as the base change of m and write BC(m).

Proposition 4.4.3. Suppose we are in Cases U or SO. Let 1 C Ag(G(AF)) be a cuspidal automorphic rep-
resentation of G(Ap) such that Ow v () is an (irreducible) cuspidal automorphic representation of H(AFp).
Then

BC(m) dimV = dim W in Case U
FL (0w v (7)) = (BC(m) @ pu~") B pAFEDTY2 i Vo= dim W + 1 in Case U .
' FL(n) dimV =dim W + 1 in Case SO1
(FL(m) ® xv)B1 dimV = dim W + 2 in Case SO2

Proof. In Case U, this is [Xuel4, Proposition 8.14]. In Case SO, by strong multiplicity one theorem [JS81],
it suffices to compare their localizations at finite places v of F' where H is split. Thus the assertion follows
from Proposition 4.3.3. U

We recall the following criterion of nonvanishing of global theta lifts.

Theorem 4.4.4. Suppose we are in Case U or SO. Suppose dimW = dimV + 1 — [Fy : F] and 7w C
Ao(G(AF)) is a genuine cuspidal automorphic representation of G(Ap). Assume that FL(w), is tempered
for every finite place v of F. If Ow v () is contained in Ao(U(V)(AF)), then it is nonzero if and only if

o for all places v of F, the local theta lift Ow, v, ., v, (Ty) s nonzero, and

e L(FL(m) ® xv; 3) is nonzero.

Proof. This follows from [Yam14, Theorem 10.1]. In fact, it is not clear whether the standard L-function
L(s, ) for m constructed by the doubling method in [Yam14] and the standard L-function of FL(7) coincide.
Nevertheless, it follows from Yamana’s computation at unramified places [Yam14, Proposition 7.1] that their
partial L-functions are equal. It follows from the temperedness assumption and [Yam14, Lemma 7.2] that

ord,_1 L(s,m ® xv) = ord,_1 L(s, FL(m) ® xv).
Now [Yam14, Theorem 10.1] applies. |

5. SEESAW AND PROOF OF MAIN THEOREMS

In this section, we use seesaw identities (both local and global) to prove the main theorems. Let r be a
positive integer.

5.1. The conjugate self-dual case. Let F' be a totally imaginary quadratic extension of a totally real
number field F.. Let Vg, be a Hermitian space of dimension 2r over F', and V; be a Hermitian space of
dimension 1 over F' equipped with an element e € V; satisfying |le|| = 1. Let Wy, be a skew-Hermitian
space of dimension 2r over F. Set Vo, 1 := Vo, ® V7. Let ¢ : U(Vy,.) C U(Vg,41) be the natural inclusion.
We fix a nontrivial additive character 1 of F\Ap, , and use notations defined in §4.
Consider the inclusion

U(VQT) X U(V1> (- U(V2r+1)
and the diagonal embedding

U(WQT) C U(Wgr) X U(Wgr)
(U(W2r), U(Vary1)) and

(U(W27~) X U(Wgr),U(Vgr) X U(Vl))
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are reductive dual pairs. In other words, there is a seesaw diagram:

U(Wg,«) X U(WQT) U(V2r+1)

=

U(WQT-) U(VQT-) X U(Vl)

(5.1)

We fix a conjugate self-dual automorphic character p of A r satisfying p,(2) = 2/v/ 2% for z € C* at every
infinite place u of F. Then we use the pair (¢, x) to define the (both local and global) theta correspondences
between the pairs

(U(W3,),U(V2r)), (U(W2,),U(V1)), (U(W2r),U(Vazri1))
as defined in §4.4. We record the following local seesaw identity attached to the seesaw diagram (5.1).

Lemma 5.1.1. Let p be a finite place of Fy that is inert in F. For irreducible admissible representations
o of U(Var)(Fyt ) and o1 of UWa,)(F4t.), there is a canonical isomorphism

Homyw,,)(F ) (Ov,,,ws, (T0) ® ww,,., T)
= HomU(VQT)(F+,v) (@sz-,v27-+1 (01)’ 7T0>'

Proof. This is standard. O

We introduce the unitary Gan—Gross—Prasad periods and the Fourier—Jacobi periods.

Definition 5.1.2. Let m9 C Ao(U(V2,)(AF,)) and 11 C Ag(U(Va2r41)(AFr,)) be cuspidal automorphic
representations and fy € mp and f; € m be cusp forms. We define the unitary Gan—Gross—Prasad period

Paar(fo, f1) 32/ fo(h) fi(e(h))dh.

U(Ver) (F)\U(Var)(Ary)

Here the measure dh is the Tamagawa measure on U(V3,.)(Ap, ). This integral is absolutely convergent
since fo and fi are rapidly decreasing.

We set
Wor1 = Wo,. ®@p, Vi, Waror := Wa,. ®p, Vo, Warory1 = Wari1 ®p, Vorgs.
Then they are all symplectic spaces over F; as defined in §4.4. Fix Lagrangian subspaces
Lor1 CWor1, Lopor CWop o,
then Lo, o, := Loy 2, @ Lo, 1 is a Lagrangian subspace of Ws, o,41. For each n € {1,2r,2r + 1}, let ww,, v,
denote the Weil representation, which can realized on the space of Schwartz functions S(Lgy ). Then
WW,, Vary1 = szmvzr@szr'

In particular, if o, 2,41 = d2r2r @ d2r1 € S(Lor2r(AF,)) ® S(L2y1 (AR, )), then

OWs, Varir (95 L(R); P2r2r41) = Ow, Vo (9, 1 G220 ) OW s, v, (9, P2r 1)
for every (g,h) € UW2,.)(AFr,) x U(V2,)(AFR,).
Definition 5.1.3. Let 0¢,01 C Ao(U(W2,)(AF,)) be two cuspidal automorphic representations. Let ¢g €

00,91 € 01 be automorphic forms and ¢ € S(HA27-71(AF+)) be a Schwartz function. We define the Fourier—
Jacobi period

FI (g0 p1:6) = / 0(9)21(0)bwa, v (g: B)dg.
U(W2, ) (F4)\U(W2, ) (AR, )

Here the measure dg is the Tamagawa measure on U(Ws,.)(Ap, ). This integral is absolutely convergent
since g and 1 are rapidly decreasing and theta functions are of moderate growth.

We will use the following global seesaw identity.
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Lemma 5.1.4. Let 01 C Aog(U(W2,)(AFR,)) and mo C Ao(U(Var)(AR,)) be cuspidal automorphic repre-
sentations such that

o0 = bv,,, w,, (o)
is a cuspidal automorphic representation of U(Wa,)(Ar). Let o1 € o1 and fo € my be cusp forms and
d2r,1 € S(Lar1(AF,)), P2r2r € S(Lar2r(Ar,)) be Schwartz functions. Then

FT (0vs, Wa, (fo; d2r2r), 015 P2r1)
= Pacp (fo, 0w, Va1 (P15 G2r2r @ d2r1)) -
Proof. To save space, we write [U(V2,)] and [U(Wa,.)] for
U(Var)(F)\U(Var)(Ap, ) and  U(Wa)(F)\U(Wo)(Ap, ),
respectively. Then
FT (O, ws, (Foi P2r20)s 015 P20,1)

= / ©1(9)0w,,.v, (g; ¢2r,1)/ Jo(h)Ow,, v,, (g, h; d2r2-)dhdg
[U(Wa2,)] [U(V2r)]

= / fo(h)/ ©1(9)0W,,. v (95 P2r.1)0W,,. Vs, (95 B P2r 27 )dgdh
[U(Var)] [U(W2,)]

- / fo(h) / 01(@)0ws, Vs (9, L(1); darzr ® dor1)dgdh
[U(Var)] [U(W2,)]

= Pacp (fo,0Ws, Varir (P1i d2r2r ® d2r1))
O

We now explain how to deduce Theorem B from Theorem D. The key ingredient is the following Burger—
Sarnak type principle for Fourier—Jacobi periods on the pair of unitary groups (U(Wa,.), U(Wy,.)), in the
spirit of [BS91,HLI8,Pra07,Zhal4]. We first fix notation. For every infinite place u of F, U(Wag,)(F ,) has
a maximal compact subgroup K, = U(r) x U(r). We fix such an isomorphism and denote by det]" det™?
the character of K, defined by

(/ﬁ, k‘g) — det(kl)ml det(kg)mg.

Proposition 5.1.5. Assume that Wa,. has signature (r,r) at every infinite place. Suppose that
(1) X is a finite set of places of Fy containing at least one finite place;

(2) oo is an automorphic representation of U(Wa,.)(Ar, ); and

(3) ®uexTy is an irreducible admissible representation of [],cs, U(Way)(Fy o) satisfying

(a) for every v € X, the space Homyw,,)(r, ,) (000 @ Wwa, , 4, @ To, C) is nonzero;

(b) for every finite place v € ¥, 1, is compactly induced from an irreducible admissible representation
vy of ZyK,, where K, is a compact open subgroup of U(Wa,)(Fy ) and Z, is the center of
U(Wa,)(Ft p); and

(c) for every infinite place w € X, 7,/ is a holomorphic discrete series that is a generalized
Verma module in the sense of [Gar05]. Moreover, if the lowest Ky -type of 70 is the character
det”™ det, ™2 for some positive integers my, ma, then g, has lowest K, -type det7* ' det; ™
with multiplicity one.

Then there exists a cuspidal automorphic representation o1 of U(W2,.)(AF,) satisfying
(1) for every place v € X, 01, is isomorphic to T,; and

(2) there exist automorphic forms @o € 0o, 1 € 01 and a Schwartz function ¢ € S(Lo,1(Ar)) such that

Proof. The proof is a variant of that of [Zhal4, Proposition 2.14]. We write G = U(Wy,.). It follows from

the hypothesis that 7, is induced from its lowest K-type v,. We consider the restriction of oo, ® Wy, y,

to K, for each v € ¥. By the assumption and Frobenius reciprocity, vV |k, is a quotient representation of

00,0 ® Wy, x,|%,- Because K, is compact, there exist an automorphic function ¢y € 09 on G(Af, ) and a

Schwartz function ¢ € S(ILa,,1(AF,)) such that the [, oy, Ko-translates of f := ¢ - Ow,, v,(—;#) span a

C-vector space that is isomorphic to ®,exv"|x, as representations of [, e Ky. We can further assume that
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f(1) # 0. Indeed, G(A%) acts on the set of all such functions. If they all vanish at the identity element,
then they would be identically zero by the weak approximation theorem according to which G(F}) is dense
in G(AFJﬁE).

The group [],c5, Zv acts on f by the character [], .y w,, ! where w,, is the central character of v,
for every v € ¥. Thus the [, .y, Z,K,-translates of f generates a C-vector space that is isomorphic to

[T e vy ! as a representation of [, cs, ZuXK,. As a result, if v € ¥ is finite, then the G(Fy ,)-translates of f

generates a C-vector space that is isomorphic to Indgv(;:““) v, ! as representations of G(F} ,). On the other

hand, if v € ¥ is infinite, then it follows from the relation between the lowest K,-type of 7,/ and o¢, that
U(gy) X K, -translates of f generate a C-vector space that is isomorphic to 7,/ as a (g, K, )-module (Here
U(g,,) is the universal enveloping algebra over C of the Lie algebra of G(Fy ,)).
Since cusp forms are rapidly decreasing, f is contained in L?*(G(F4)\G(Ap,)). Because the space of
(

automorphic forms are L2-dense, one can find an automorphic form ¢, on G(A F, ) such that

/ f(9)e1(9)dg
G(F)\G(AF,)
is absolutely convergent and nonzero. Using Hecke projectors and properties of f, we can further assume that
Hecke translates of ¢ generate a cuspidal automorphic representation o1 of G(Ap, ) satisfying o1, = 7,
for every v € . Thus FL(po, 1; $) is nonzero.

The theorem is proved. (Il

We define the notion of admissible places for the coefficient field appearing in Theorem B.

Definition 5.1.6. Let II be a relevant automorphic representation of GLs,-(Ar) and E be a strong coefficient
field of II (see Definition 3.1.6). We say that a finite place A of E%n, with underlying prime ¢, is an admissible
place (with respect to II) if the following hold:

(A1) £>4r+2.
(A2) = does not contain places over .
(A3) The residual representation pyy, » is absolutely irreducible. Fix a Galp-stable Ox-lattice R C prpa(r)

(which is unique up to homothety), together with an isomorphism = : R = RY(1).

(A4-1) Either one of the following two assumptions holds:
(a) The image of Galr in GL(R) contains a nontrivial scalar element.
(b) R is a semisimple x[Galp]-module and Hom,, (a1 (End(R),R) = 0.

(A4-2) (GI};,’L@,R) from Lemma 2.3.4 holds for F' = Fyax 4 and 2(T) =17 — 1.

(A5) The homomorphism pyy , , is rigid for (XY, @) (see Definition 3.6.1), and Pralcals,,, is absolutely
irreducible.

II
(A6) The composite homomorphism TQET Pm, Op — kK is cohomologically generic (see Definition 3.1.9

T
and Definition 3.2.5).

Lemma 5.1.7. Let II be a relevant automorphic representation of GLa.(Afr) and E be a strong coefficient
field of T1 (see Definition 3.1.6). Suppose Fy # Q and one of the following two assumptions holds:
(1) E = Q and there exists a modular elliptic curve A over Fy with no complex multiplication over F
satisfying pre = Sym* ' H}, (A%, Qo) |Galy for every rational prime £.
(2) There exists a finite place w of F such that 11, is supercuspidal; and a good place p of F (see
Definition 3.3.3) such that I, is a Steinberg representation.
Then all but finitely many finite places of E are admissible (with respect to II).

Proof. We first consider case (1): By [Ser72, Théoréme 6] and [Lom15], for sufficiently large rational prime
£, the homomorphism
ﬁA,l Feax + Ga’lFrﬁx — GL (Hét (Af’ F@))

is surjective; let ¢ be such a rational prime. We fix an isomorphism H}, (Af7 Fg) = Fi;‘ﬂ such that pa s(c) is
given by the matrix

[1 1] € GLo(F,).
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We need to check that every condition in Definition 5.1.6 excludes only finitely many rational primes £.
For (A1-3) and (A4-1), this is clear.
For (A4-2), we suppose £ > 24772 so

{2:|:1 o3 2:&(2r—1)}

consists of distinct elements in Fy, and does not contain —2 € F,. We take an element g € Galp,,, whose
image under py , is

[2 1] € GLy(F,).

Thus (GI%/797R) from Lemma 2.3.4 holds for F’ = Fygy 4 and & (T) = T? — 1 holds by taking the image of
gc under (pyy ¢, &)

For (A5), by [LTX*24, Corollary 4.2], the condition that pyy y | is rigid for (X", @) excludes only
finitely many finite places A of E. The second condition is clearly satisfied.

For (A6), this follows from the same reasoning as in the proof of Lemma 3.8.2.

We now consider case (2): We need to check that every condition in Definition 5.1.6 excludes only finitely
many rational primes /.

For (A1) and (A2), this is clear.

For (A3), this follows from [LTX*24, Theorem 4.5.(1)].

For (A4-1), this follows by the same reasoning as in the proof of [LTX 124, Lemma 8.1.4].

For (A4-2), note that, for all but finitely many finite place A of E strongly disjoint from p,

(1Pl (mod ), [[pl** (mod ), [[p]*"~" (mod A)}

consists of distinct elements and does not contain —1. For every such A that also satisfies (A3), the condition
(GI%{’F,“@) from Lemma 2.3.4 holds for F' = Figx 4 and 2(T) = T2 —1, by taking the element (pg »,%¢)(¢p)-
For (A5-2), this follows from [LTX*24, Theorem 4.8].
For (A6), this follows from the same reasoning as in the proof of Lemma 3.8.2.
Note that the primes that are excluded can be effectively bounded. ([l

We now prove Theorem B using the Burger—Sarnak type principle (see Proposition 5.1.5) and seesaw
identities.

Theorem 5.1.8. Let Il be a relevant automorphic representation of GLa,(AF) and E be a strong coefficient
field of Iy (see Definition 3.1.6). If L(3,11y) # 0, then for every admissible place X of E with respect to Ilo,
the Bloch—Kato Selmer group H}(R P11, A (1)) vanishes.

Proof. Let A be an admissible place with underlying rational prime ¢. We fix an isomorphism ¢, : C = Q,
that induces the place X\. By (A4-2) and the Chebotarev density theorem, we can find a good inert place p
of F; (see Definition 3.3.3) satisfying

e the underlying prime of p is larger than max (¢, 2r + 1); and

e D (¢p) has generalized eigenvalues {|p|| -aﬁ,...,”p” . aff,l.} C Rx* with ap1 = [|p|| and ap; ¢

{Hp||il (mod M)} for every 2 < i <r.

We take a IIj ,-avoiding good representation Hz'p of GLy,(F},) with respect to ¢, (see Definition A.1.2)
satisfying

e there exists a lift ' € Wk, of the arithmetic Frobenius element such that the eigenvalues {aq, ..., as.}

of reczr(H?”'p)(Fz) are f-adic units; and

Ipl1? ¢ {aia; 1 <i#j < 2r}U{aull <i<2r} C T
holds.
Such a representation exists by Lemma A.1.3.
We fix another prime q of Fy inert in F' such that 2r¢ divides Hq||2 — 1. By Lemma A.1.1, we can take a
conjugate-orthogonal supercuspidal representation Hi:/q of GLa,(F,) whose associated Galois representation

vereca (1) : W, — GLay(Qp)
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is residually absolutely irreducible.

In this paragraph, let v denote a place in {p,q}. By the local Gan-Gross—Prasad conjecture (see Theo-
rem 4.2.1(1)), there exists a Hermitian space V, of dimension 2r over F, and irreducible admissible repre-
sentations 7(, ,, and 71 , of U(V;) and U(V} ,), respectively, satisfying

(1) BC(m,,) =1y, and BC(7y ,,) = H?/U B 1, where 1 is the trivial representation of GL1(F,); and

(2) Homyyyy (7] ,luevy) ® 7G4, C) # 0.

In particular, 77 , is supercuspidal by [MR18, Corollaire 3.5]. By Prasad’s conjecture (see Theorem 4.3.3(3)),
there exist a unique skew-Hermitian space W) of dimension 2r over F, such that the contragredient theta
lift

010 = Ov; wi(m,))Y

02

is nonzero. Moreover, it follows from Prasad’s conjectures (see Theorem 4.3.3) that BC(J’l’X)) = H?:’v ® fy-
In particular, it follows from [Fin21, Theorem 8.1] and [MR18, Corollaire 3.5] that o/ , is compactly induced
from an irreducible representation of some compact open subgroup of U(W,). Thus it follows from the local
seesaw identity (see Lemma 5.1.1) and Proposition 4.3.1 that the theta lift

0.0 = Oy wy (75,)
is also nonzero, and
HomU(W{’)(Uf)’v ® Ww: 4, ® J/Lv, C)
is nonzero. Moreover, it follows from Prasad’s conjectures (see Theorem 4.3.3(1)) that BC(oy ) = I -
We now consider an infinite place u. let W, be a skew-Hermitian space of dimension 2r and signature
(r,7) over Fy ,, and let V) be a Hermitian space of dimension 2r and signature (2r,0) over F ,. Let

we (1))
be the contragredient of the theta lift of the trivial representation of U(V; ;) to U(Wy), and let

w; (1)

be the theta lift of the trivial representation of U(V,)) to U(W}). Then it follows from classical calculation
(see, for example, [Har07, §2.3] and [Li90]) that
. 01”2 is a holomorphic discrete series representation with Harish-Chandra parameter

v 2r+1 3 1 2r —1

™ = ey ey —
2 2" 2 2

and the lowest K,-type being the character (ki,ks) + det(k1)" ! det(ko)~"; and

e 0, is a holomorphic discrete series representation with Harish-Chandra parameter

2r—1 2r—1
T0 = D) gaeeg— B

and the lowest K,-type being the character (k1, k2) — det(k1)" det(ks) ™"
for every infinite place u of Fy. In particular, 0/1’1\; is a generalized Verma module for every infinite place
u of Fy (cf. [Gar05]). Moreover, by the local seesaw identity (see Lemma 5.1.1) and Proposition 4.3.1, the
space

Ull,u = (Hvl

u,f?

/o
JO,u T 9‘/’

u?

Homy(w,)(00,, ® ww; ® 01,,C)
is nonzero for every infinite place u of F'y. Moreover, BC(oy ,,) = o u-

By Arthur’s multiplicity formula (see [KMSW14, Theorem 1.7.1]), there exists a skew-Hermitian space
W, of dimension 2r over F with signature (r,r) at every infinite place satisfying Wa,,, = W/, for every
v € {p,q}, and a cuspidal automorphic representation oo of U(Wy,) satisfying o¢, = o, for every v €
{p,q} UEE and BC(0p) is isomorphic to ITy.

Because L(%,1Iy) is nonzero, it follows from the local conservation relation (see Theorem 4.3.2), The-
orem 2.1.1(1) and Theorem 4.4.4 that there exists a Hermitian space Vg, of dimension 2r over F with
signature (2r,0) at every infinite place, such that the conjugate global theta lift

o = 0W27‘7V2’7‘ (00)
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is an (irreducible) cuspidal automorphic representation of Vy,.(Ap) with trivial Archimedean components.
Then it follows from Proposition 4.4.1 and the local conservation relation (see Theorem 4.3.2) that Vg, ,, =V
and mo, = 7, for every v € {p,q}. Moreover, it follows from Lemma 4.4.3 and Proposition 4.4.1 that
BC(mg) is isomorphic to Iy, and o¢ = Ov,, w,, (To). Set Vo1 1= (Vo )s.

It follows from the Burger—Sarnak type principle (see Proposition 5.1.5) that there exists a cuspidal
automorphic representation o1 of U(W2,)(AF, ) such that o1, is isomorphic to oy , for every v € {p, g}UX5
together with automorphic forms g € 09,1 € o1 and a Schwartz function ¢ € S(La,,1(AF, )) such that

FI(po,p1:9) # 0.
Set II} := BC(51). Then II} , is isomorphic to Hi'v ® py for every v € {p,q} and II} , is isomorphic to

1u
BC(U'{L) for every u € X% . Set II; := (I} ® p~') B 1, where 1 is the trivial representation of GL;(AF).
Then II; is an almost cuspidal relevant representation of GLa,41(AF) (see Definition 1.1.3).

It follows from the global seesaw identity Lemma 5.1.4 that

o= 9W27‘5V27‘+1 (0'71)

is nonzero. Because Vg, 1 is anisotropic, we know 71 is an (irreducible) cuspidal automorphic representation
of U(Va,41)(AF, ). In particular, it follows from Lemma 4.4.3 that m; has trivial Archimedean component,
and 7y, is isomorphic to 7} ,, for every v € {p,q}. Moreover, it follows from Proposition 4.4.3 that

BC(m) = (BC(7y) @ p~H) B 1 =114,
Thus it follows from the global seesaw identity again that there exist automorphic forms fy € mg and f1 € m
such that
Paacr(fo, f1) # 0.

Let E’ be a strong coefficient field of II; containing E. The isomorphism ¢, : C =5 Q; induces a place N’
of E' with underlying place A of E. We check that A’ is an admissible place of E with respect to (ILy,II;)
(see Definition 3.8.1).

e (L1), (L2), (L4-1) and (L5) are satisfied by (A1), (A2), (A4-1) and (A5), respectively.

e For (L3), py, \ is absolutely irreducible by (A3). The restriction of P v OB, Q¢ to Galp, is
residually absolutely irreducible by Proposition 2.1.1 and the definition of H?’fq. Thus pp i
residually absolutely irreducible.

e For (L4-2), it is easy to check that (GI}’mx o) with 2(T) = T? — 1 is satisfied by taking the
element (prr, x4 Py v 45 0) (Dp)-

e For (L6), if & = 0, then this follows from (A6). If o = 1, then this follows from the definition of Hi"”p
and the Chebotarev density theorem applied to the representation pr, @ €, of Galr, we see that
there are infinitely many finite places w of F' that are of degree 1 over QQ satisfying that
(1) I, is unramified with Satake parameter {aq1,. .., @1 2,41} in which ¢¢(aq ;) is an f-adic unit

for every 1 <i < 2r+1, and
(2) wlari/ar;) # |wl| €y for 1 <i#j<2r+1
Then it follows from [YZ25, Theorem 1.5] that (L6) holds for X

As Fy # Q, Hypothesis 3.2.3 is known for every positive integer N > 2 by Proposition 3.2.4. We now

apply (the proof of) Theorem 3.9.2 to get

H} (F, priy A (n) @, B\ = H} (F, prig n (r) = 0.
Thus H (F, pri,x(n)) vanishes. O
We now deduce Theorem A and Theorem C from Theorem B.

Corollary 5.1.9. Let A be a modular elliptic curve over F.. Suppose that F* # Q and A has no complex
multiplication over F. If the central critical value L (SmeT_1 Ap; 7’) does not vanish, then the Bloch-Kato
Selmer group

H (P, Sym™ ™" Hy, (A7, Qo) (1)
vanishes for all but finitely many rational primes £.
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Proof. By [NT22, Theorem A] and [AC89], Sym® ! Ar is modular. Let Iy denote the automorphic rep-
resentation of GLo,.(Af) attached to Symz’"f1 Ap, which is a cuspidal relevant representation. Thus Il
has strong coefficient field Q, and pr, ¢ is conjugate to Sym? * H}, (A%, Qy) as Q[Galp]-modules for every

rational prime ¢. Moreover,
1

L(§7HO) =L (r, Sym? ! Ar) .
As Fy # Q, Hypothesis 3.2.3 is known for every positive integer N > 2 by Proposition 3.2.4. Thus the
assertion is an immediate consequence of Theorem B and Lemma 5.1.7. O

Corollary 5.1.10. Let IT be a relevant automorphic representation of GLa,.(Ar). Suppose that

(1) Fy #Q;

(2) There exists a finite place w of F such that I, is supercuspidal;

(3) There exists a good inert place p of F' (see Definition 3.3.3) such that I1,, is a Steinberg representation.
Let E be a strong coefficient field of I1 (see Definition 3.1.6). If the central critical value L(%,1I) does not
vanish, then for almost every finite place A of E, the Bloch—Kato Selmer group H}(F, pria(n)) vanishes.

Proof. As F, # Q, Hypothesis 3.2.3 is known for every positive integer N > 2 by Proposition 3.2.4. Thus
the assertion is an immediate consequence of Theorem B and Lemma 5.1.7. (]

5.2. The self-dual case. Let F be a totally real number field. Let Vg, 11 be a quadratic space of dimension
2r over F' and let V1 a quadratic space of dimension 1 over F' of discriminant 1. Let Wy, be a symplectic
space of dimension 2r over F. Set Vo,yo := Vo, 1 & Vy. Let ¢ : O(Va.41) C O(Va,12) be the natural
inclusion. We fix a nontrivial additive character ¢ of F\Ap, and use notation defined in §4.
Consider the inclusion

O(V2T+1) X O(Vl) C O(V2r+2)
and the diagonal embedding

Sp(W2,) C Sp(W2,) x Sp(Wa,).
(Sp(W2r), O(V2r42)) and

(Sp(Wa) X Sp(Wa,.), 0(Va,41) X O(V7y))

are reductive dual pairs. In other words there is a seesaw diagram:

Sp(Way,) x Sp(Wa,) O(Vary2)

=

Sp(Wa,.) O(Vary1) x O(Vy)

We record the following local seesaw identity attached to the seesaw diagram (5.1).

Lemma 5.2.1. For irreducible admissible representations mo of O(Var11)(Fy ) and o1 of Sp(Wa, ) (Fy ),
there is a canonical isomorphism

Homsp(wzr)(FJr,u) (@V27‘+17W27‘ (ﬂ'O) @ WWs,.s 7T)
= Homo(v27‘+1)(F+,v) (ewzr,v2r+2 (Ul)v 7TO) .

Proof. This is standard. O
We introduce the orthogonal Gross—Prasad periods and the Fourier—Jacobi periods.

Definition 5.2.2. Let m9 C Ag(O(Var41)(Ar)) and mp C Ag(O(Vari2)(AF)) be cuspidal automorphic
representations, and fy € mp and f; € m; be cusp forms. We define the orthogonal Gross—Prasad period

Pcr(fo, f1) = fo(h) fi(c(h))dh.

/O(V27~+1)(F)\O(V2r+1)(AF)
Here the measure dh is the Tamagawa measure on O(Va,11)(Ap). This integral is absolutely convergent
since fp and f; are rapidly decreasing.
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We set
Waor1 = Wao ®p Vi, Warory1 = Wa, ®p Vory1, Wororio i= Wory @p Voo,
Then they are all symplectic spaces over F as defined in §4.4. Fix Lagrangian subspaces
Lor1 C Wor1, Lororyi € Wopopia,

then Loy op11 := Loy 2,41 @® Loy 1 is a Lagrangian subspace of Wa, 9,49. For each n € {1,2r + 1,2r + 2},
we denote by ww,, v, the Weil representation, which can be realized on the space of Schwartz functions
S(Lghn). Then

WWay Varis = WWay Va4 OWW,, -
In particular, if ¢o, 2,12 = @2r 2711 @ P21 € S(Lar2r+1(Ar)) ® S(Lar1(AFr)), then
OW., Vayin (95 L(R); G2r2ri2) = O, Var i1 (95 B G20 20 11) 0w, v, (95 P2r1)
for every (g,h) € Sp(Wa,)(Ar) x O(Var11)(AF).

Definition 5.2.3. Let 5o C Ay(Sp(Wa,)(Af)) and oy C Ag(Sp(Wa,)(Af)) be genuine cuspidal automor-
phic representations. Let @g € &g, 1 € 01 be cusp forms and ¢ € S(ILg, 1(AF)) be a Schwartz function. We
define the Fourier—Jacobi period

FI (o, p150) = G0(9)p1(9)0w,, v, (g; #)dg.

/SP(War)(F)\ Sp(Wa)(AF)

Here g is an arbitrary lift of ¢ to §£)(W27«), and the measure dg is the Tamagawa measure on Sp(Wos,.)(AF).
This integral is absolutely convergent since ¢y and ¢; are rapidly decreasing and theta functions are of
moderate growth.

We will use the following global seesaw identity.

Lemma 5.2.4. Let 01 C Ao(Sp(Wa,)(Ap,)) and my C Ao(O(Var41)(Ar,)) be cuspidal automorphic
representations, such that

0o = 0V2'r+law27‘ (ﬁo)
is a genuine cuspidal automorphic representation of gl-;(WQr)(AF)' Let o1 € 01 and fy € my be cusp forms
and ¢ar1 € S(Lar1(AF,)), d2r2r+1 € S(L2p2r+1(AF,)) be Schwartz functions. Then
FI (6v2r+l:w2r (?07 ¢27’,2r+1)7 P15 ¢2r,1)
=Pcp (f0, O0Way Var i (B G2r2r+1 @ P2r1)) -
Proof. The proof is the same as that of Lemma 5.1.4, thus omitted. O
We now explain how to deduce Conjecture E from Conjecture F. The key ingredient is the following
Burger-Sarnak type principle for Fourier-Jacobi periods on the pair (Sp(Wa,), Sp(Wa,.)), in the spirit of
[BS91, HL98, Pra07, Zhald]. We first fix notation. For every infinite place u of F, Sp(Wa,.)(F,) has a
maximal compact subgroup K,, & U(r). Denote the preimage of K, in Sp(Wy,.)(F,) by K,. Under the
identification K, = U(r), one can realize
K, = {(9,2)|g € U(r),z € C*, det(g) = 2%}.
There is a genuine “square-root of the determinant” character
Vdet : K, — C, (k,2) — z,
which satisfies (v/det)? = det (via the projection K, — Ky,).
Proposition 5.2.5. Suppose that
(1) X is a finite set of places of F containing at least one finite place;
(2) oo is a genuine automorphic representation of é\};(Wgr)(Ap); and

(3) ®uexTy is an drreducible admissible representation of [],cy, Spa,. (Fy) such that
(a) for every v € ¥, the space Homgyw,,)(r,) (G0 @ Ww,,, 4, @ To, C) is nonzero;
(b) for every finite place v € 3, 7, is a supercuspidal representation that is compactly induced from
a representation of a compact open subgroup K., of Sp,,.(F,); and
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(c) for every infinite place w € 3, 7,0 is a holomorphic discrete series that is a generalized Verma

module in the sense of [Gar05]. Moreover, if the lowest K -type of 70 is the character det™ for
some positive integer m, then ¢, has lowest Ky-type (V/det)2m=1 with multiplicity one.
Then there exists a cuspidal automorphic representation oy of Sp(Wa,)(AF, ) satisfying
(1) for every v € ¥, 01, is isomorphic to ,; and
(2) there exist genuine automorphic forms ¢g € 69,1 € 01 and a Schwartz function ¢ € S(Lay1(AFR))
such that
FL(Po, p150) # 0.

Proof. The proof is the same as that of Proposition 5.1.5, thus omitted. (]

We introduce the notion of preadmissible places for the coefficient fields appearing in Conjecture F. This
is a preliminary notation that can be refined.

Definition 5.2.6. Let A be an elliptic curve over F' with End(A%) = Z, and II a relevant automorphic
representation of GLa,11(AF). Let E C C be a strong coefficient field of I (Definition 2.2.4). We say that
a finite place A € X8 with underlying prime ¢, is preadmissible (with respect to (A,II)) if
(pL1) The semi-simplified residual representation py ) is either absolutely irreducible or a sum of a self-dual
absolutely irreducible representation with a self-dual character.

(pL2) There exists a finite place p of F' and a finite extension E’ of E in C with a finite place X" over A
satisfying
(a) {£1, =+ ||p||** (mod £),+ [|p|=2 (mod £), ..., +[|p]=*" (mod €)} consists of distinct elements;
(b) E has good reduction at p with a,(E) — (||p|| + 1) is divisible by ¢;

(c) I, is unramified with Satake parameter {—1,a7",...,a'} C O such that {a;|1 <i < r} is
disjoint from {1, [[p|=",..., £ [p[I=*"} in ry.
(pL3) There exists a finite place v of F' such that IL, is unramified with Satake parameters {1, af&, e ,af}}
satisfying

o]l & {awiayj1 <i# G <r}ufagilt <i<riu{l} CFe.
We give an example where it is known that all but finitely many finite places A of E are admissible.

Lemma 5.2.7. Let A and 11 be as in Definition 5.2.6. If we assume that there exist finite places p,q of F
such that
(1) A has split multiplicative reduction at p, and
(2) 11, is unramified with Satake parameter of the form {—1,a5", ..., o'} satisfying a; # +1 for every
1<i<r;and
(3) 11q is either supercuspidal or an isobaric sum of a self-dual supercuspidal representation with a self-
dual character.
then there exists an effective constant N(F, A, II,,I1;) depending on F, A,II,, and I1, such that every finite
place X of E with underlying prime { greater than N(F, A,11,,I1,) is admissible with respect to (A,1II).

Proof. We show that every condition in Definition 5.2.6 excludes only finitely many finite places of E.

For (pL1), the condition Pris A is absolutely irreducible only excludes finitely many finite places A of E
by [LTX"24, Theorem 4.5.(1)] and (3).

For (pL2), it follows from temperedness (see Proposition 2.2.2) that |o;| = 1 for every 1 < i < r.
Moreover, «; is an algebraic number for every 1 < ¢ < r by Remark 2.2.5. Thus it is clear that when ¢ is
large, (pL2)(a, c) is satisfied. By the Chebotarev density theorem, (L2) is satisfied for all such Z.

For (pL3), it follows from Proposition 2.2.2(1) that |la;|| = 1 for every 1 < i < 2r + 1. Thus, for every
sufficiently large rational prime ¢,

llp|l ¢ {:I:oziozj_1|l <i#j<riu{tafi<i<riu{zi}cF,.

Suppose A is a finite place of E over ¢, we fix an isomorphism ¢, : C = Q, which induces A. Applying the
Chebotarev density theorem to the representation py; \ @ & of Galg, we see that (L3) holds for . O

Theorem 5.2.8. Let r be a positive integer, and let A be a modular elliptic curve over F' with no complex
multiplication over F'. Assume Conjecture F holds for r and A. If the central critical value L (Symz’“*1 A 7‘)
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does not vanish, then there is an effective constant N(F, A,r) depending only on F, A, and r such that the
Bloch—Kato Selmer group

H} (F, Sym® ~ 1 H}, (A;Qo)(r)) -

vanishes for all rational primes £ greater than N(F, A,r).

Proof. By [NT22, Theorem A], Sym?* ' A is modular. Let IIy denote the automorphic representation of
GLy,(AF) attached to Sym? ~* A, which is a cuspidal automorphic representation. Thus Iy has strong
coefficient field Q, and pry, ¢ is conjugate to Sym® ~* H} (A%, Q) as Q[Galr]-modules for every rational

prime ¢. Moreover,
1

L(i,Ho) =1L (T, Sym? ! A) .
By [Ser72, Théoréme 6] and [Lom15], there is an effective constant Ny(F, A) depending only on A such
that the homomorphism

Pay: Galp — GL (Hi (A7, Fo))
is surjective for every rational prime ¢ greater than N (F, A).

Suppose there is an effective constant No(F, A,r) such that Conjecture F holds for any preadmissible
finite place A of the strong coefficient field with underlying rational prime ¢ > No(F, A, r). We set

N(F,A,r) :=max(N(F, A), No(F, A,r),217).
Let £ > N(F, A,r) be a rational prime with a fixed isomorphism ¢, : C =+ Q. Then we know the set
By = {1,425 £2%2 o Fir}

consists of distinct elements in Fy. By the Chebotarev density theorem, we can find a finite place p of F'
satisfying

e The rational prime p underlying p is larger than max(¢, 2r);

e A has good reduction at p; and

® D4.(¢p) has eigenvalues {2, 1}.
We fix a totally positive element d € F* satisfying (—1)""10 # 1 € F*/(F*)2.

We take a supercuspidal Bs-avoiding good representation H?bp' of GLg, (F}) with respect to ¢y (see Defi-

nition A.2.1) satisfying

® LyTeCo, (H'i%’) is residually absolutely irreducible; and

e there exists a lift ' € Wg, of the arithmetic Frobenius element such that the eigenvalues

{aq, ..., a9} of 4 rech(H?b’g)(F) are f-adic units; and

Ipll  {£aio; 1 <i#j<2r}U{ta;|l <i<2r}CF,
holds.
Such a representation exists by Lemma A.2.2. Set Hb = be '@\ X(=1)r+10-

By the local Gan—Gross—Prasad conjecture (see T heorem 4 2.1(2)), there exists a quadratic space V, of
dimension 2r + 1 over F, with disc(Vy) = (—1)"d € Fy/(F,*)?; and irreducible admissible representations
m,p and m , of O(V}) and O(V}/;), respectively, satisfying

(1) FL(n,,) = oy and FL(7} ,) = Hi'v B 1, where 1 is the trivial representation of GL;(F}); and

(2) Homoyyy, (wg’pb(v‘;) ® wg,p,c) £ 0.
In particular, 7r/17p is supercuspidal by [MR18, Corollaire 3.5]. According to Prasad’s conjecture (see The-
orem 4.3.3(7)), upon changing (7 ,,, 77 ,) to (), ® det, 7] , ® det) if necessary, we can assume that the
contragredient theta lift

Ui,p = (0‘/;1?7‘/[/‘; (ﬂ-i,p))v

is nonzero, where W, is a symplectic space of dimension 2r over F,. Moreover, it follows from Prasad’s

conjectures (see Theorem 4.3.3) that FL(O'/L\;) = H?’fp ® X(=1)+1p- In particular, it follows from [Fin21,

Theorem 8.1] and [MR18, Corollaire 3.5] that o7 , is supercuspidal and compactly induced from an irreducible
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representation of some compact open subgroup of Sp(W,). By the local seesaw identity (see Lemma 5.2.1)
and Proposition 4.3.1, the theta lift

~/ . 1,V

Gop = Qvucp’w‘; (ﬂ'oyp)
is also nonzero, and

HomSp(Wp) (5’67'3 X WY X Ull,pa (C)
is nonzero. Moreover, it follows from Prasad’s conjecture (see Theorem 4.3.3(5)) that
FL(&é,p) = H&p @ X(-1)ra-

We now consider an infinite place u. Let W, be a symplectic space of dimension 2r over F,, and let V!
be a quadratic space of dimension 2r + 1 over F,, with signature (2r 4+ 1,0). Let

o1 = (Ovy  w,(1)"
be the contragredient of the theta lift of the trivial representation of O(V ;) to Sp(W,,), and let

50,0 = Oviw, (1)

u?

be the theta lift of the trivial representation of O(V}) to é{)(Wu) Then it follows from classical calculation
(see, for example, [KR90, Proposition 2.1] and [AB98, Theorem 3.3]) that
. 0'/1’7\71 is a holomorphic discrete series representation with Harish-Chandra parameter
Y =0rr—-1,...,1)
and the lowest K,-type being the character det”"!; and

e 5, is a holomorphic discrete series representation with Harish-Chandra parameter

5 2r—1 2r -3 1
T0 — s ey =
2 2 2
and the lowest ﬁu—type being the character v/ det2TJr1

for every infinite place u of F. In particular, 0'1”vu is a generalized Verma module for every infinite place u of
F (cf. [Gar05]). Moreover, by the local seesaw identity (see Lemma 5.2.1) and Proposition 4.3.1, the space

Homgp,w, ) (0, ® ww, ® 0} ,,C)

is nonzero for every infinite place u of F'. Moreover, FL(op ,,) = oy @ X(—1)r-

By Arthur’s multiplicity formula [GI18, Theorem 1.4], there exists a genuine cuspidal automorphic rep-
resentation &, of Sp(W,.) satisfying Go,u = 5, for every u € X5 U {p} and FL(Go) = II§ ® X(~1)ro-

Because L(3,1Ilp) is nonzero, it follows from the local conservation relation (see Theorem 4.3.2), Theo-
rem 2.2.2(1) and Theorem 4.4.4 that there exists a unique quadratic space Va,11 of dimension 2r + 1 over
F satisfying

e Vo, has signature (2r + 1,0) at every infinite place of F
o disc(Va,p1) = (=1)"0 € F*/(F*)?; and
e the conjugate global theta lift
o = 9w27‘5v27‘+1 (60)
is an (irreducible) cuspidal automorphic representation of Va,.11(Ap) with trivial Archimedean
components.
Then it follows from Proposition 4.4.1 and the local conservation relation (see Theorem 4.3.2) that Vo, 41, is
isomorphic to Vp' and g p is isomorphic to 77(/3,;3‘ Moreover, it follows from Lemma 4.4.3 and Proposition 4.4.1
that FL(mg) is isomorphic to ITy, and
0o = 0V2T+17W27‘ (WO)'
Set V2T+2 = (V2T+1)ﬁ.

It follows from the Burger—Sarnak type principle (see Proposition 5.1.5) that there exists a cuspidal
automorphic representation oy of Sp(W2,.)(AF, ) such that oy, is isomorphic to o , for every v € {p,q} U
Dy together with automorphic forms @ € 69,91 € 01 and a Schwartz function ¢ € S(ILa,1(AF,)) such
that

FI(@o,p1:0) # 0.
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Set I} := FL(7,), which satisfies H‘jvp = H?”'p ® X(—1)r+1p and H‘i’u & FL(U'{L) ® X(—1)r+ for every u € L.
Then II := II} ® x(_1)r+15 is a relevant automorphic representation of GLa,41(AF) (see Definition 2.2.1).
Set IT; :=TI B 1, where 1 is the trivial representation of GL;(AF).

It follows from the global seesaw identity (see Lemma 5.1.4) that

T = 9W27‘5V27‘+2 (01)
is nonzero. Because Vg, 42 is anisotropic, we know 71 is an (irreducible) cuspidal automorphic representation

of O(Va,42)(AF). In particular, it follows from Lemma 4.4.3 that 7; has trivial Archimedean component,
and m p is isomorphic to 7 ,. Moreover, it follows from Proposition 4.4.3 that

FL(m) 2 (FL(71) ® X(,l)r-ua) H1=II.

Thus it follows from the global seesaw identity again that there exist automorphic forms fy € mg and f1 € m
such that

Pcr(fo, f1) #0.

Let E C C be a strong coefficient field of II. The isomorphism ¢, : C = Q, induces a place A of E. We
check that A is a preadmissible place of E with respect to (E,II;) (see Definition 5.2.6).

e For (pL1), note that the restriction of pry  to Galp, is a direct sum of a residually absolutely irre-
ducible self-dual representation o with a self-dual character x by Proposition 2.2.2 and the definition
of H?’,’p. If the semi-simplified residual representation pyy , is not irreducible, then it is a sum of a
self-dual absolutely irreducible representation with a self-dual character. On the other hand, if it
is irreducible, then it is absolutely irreducible, because otherwise pp \ ®,, K is a sum of several
irreducible representations of the same dimension, contradicting the fact that pp )\\Gaqu =0dX.

e (pL2) holds by our choice of p and the definition of H?’fp; see Definition A.2.1.

e (pL3) holds by the definition of H?b,l’; and the Chebotarev density theorem applied to the represen-
tation pry , @ & of Galp.
We now apply Conjecture F to the preadmissible place A to get
H}‘ (F7 Sym2r_1 Hét(A; Qg)(?")) ®Q. Ey = H}‘ (Fv pHol(T)) ®Q, E\x= H}” (F’ PHO,A(T)) = 0.

Thus H} (F, Sym?*" ! H}, (4; (@g)(r)) vanishes.
The theorem is proved. O

APPENDIX A. POLARIZED LOCAL (GALOIS REPRESENTATIONS

In this appendix, we construct certain (conjugate) self-dual local Galois representations of special kind.
These representations will be used in the Burger—Sarnak type principles.

A.1. Special conjugate self-dual local Galois representations. In this subsection, we construct certain
conjugate self-dual local Galois representations of special kind.

Let p be an odd rational prime, and let K be a finite extension of Q,. Denote by & the residue field of
K, of cardinality q. Let K; be the unramified quadratic extension of K. Let Ok (resp. O,) denote the
ring of integers of K (resp. K1) with maximal ideal mg (resp. mg, ). Denote by x; the residue field of Kj;.
Fix a uniformizer wg of K.

We care about representations of W, that are conjugate-orthogonal, that is, if we write TI? := (II*)V,
where II° is the conjugate of IT by an element s € Wx which maps to ¢ € Gal(K;/K), then there is an
isomorphism f : 1Y = II satisfying (f¥)* = f. Constructing irreducible conjugate self-dual representations
of Wk, is more complicated than expected. We will only provide the following construction of residually
absolutely irreducible conjugate-orthogonal representations when there is a tamely ramified cyclic extension
of degree 2r.

Lemma A.1.1. Let ¢ be a rational prime distinct from p, with a fized isomorphism 1y : C = Q. Suppose £
is coprime to 2pr and 2r|(q? — 1). Then there exists a conjugate-orthogonal supercuspidal representation I
of GLo,. (K1) such that the Galois representation

tereco, (IT) : Wg, — GLa,(Qy)

attached to I1 wia local Langlands correspondence is residually absolutely irreducible.
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Proof. By local Langlands correspondence for GLa,.(K7), it . suffices to construct a residually absolutely
irreducible 2r-dimensional representation (p, V') of Wi, with Q-coefficients, a lift s € Wi of ¢ € Gal(K;/K),
and a nondegenerate pairing (—, =) : V x V — Qy satisfying

(A1) (p(1)f,p(sTs™)g) = (f.9)
(9, f) = (f,p(5%)g)
for all 7 € Wy, and f,ge V.
Let 7 € r; be such that {¥2,7} is a k-basis of k1. Let v € K{* denote the Teichmiiller lift of 7, and set
E = Ki((ywg)"?),

which is a totally (tamely) ramified cyclic Galois extension of K; of degree 2r since 2r|(¢*> — 1). Let Op
denote the ring of integers of F with maximal ideal mg. Let Wg C Wik, denote the corresponding Weil
groups, and write abg : Wi — WP for the Abelianization map. Let

Artp : BX = WaP

be the local Artin map, normalized so that uniformizers are mapped to geometric Frobenius classes.

Let 7 be a generator of Gal(E/K;) = Z/2rZ and let wg be a uniformizer of E such that 7(wg) = (wg
for some 2r-th root of unity ¢ € K;*. Let ¢ € Gal(E/K) be lift of ¢ € Gal(K;/K). By considering the
action of ¢ we may change the lift so that ¢(y) = ¢ and ¢(wg) = —wg. In particular, ¢ = 1.

Recall the group decomposition

E* = (wg) x k' xUpg, Ul=1+mg,

where k7 embeds into K¢ via the Teichmiiller lift [—] : kK — K. Since p > 2, the p-adic logarithm
1 (—z)*!
log: U > mg:1+x+— Z r—
k€L

is a continuous group homomorphism and is Gal(E/K)-equivariant. We extend log to a map E* — mg by
setting log(wg) = 0 and log \Hlx =0.

2rei

Let ex denote the ramification index of K, and set ko = | P

determined later. Define, for z € E,

]+ 1. Fix a positive integer m > ko to be

Vg = Lg€27ri'tr5/@p () /pmHIC]

which is an additive character of F of conductor at most —(2rex(m — 1) +1). Let x : E* — Q. denote
the character
x(z) :=VYg(wglogz), z€FE*.

1

When m is sufficiently large, x® = x~! and x“ # x for every nontrivial element o € Gal(E/K;). Here we

use that m%  log(E*). Set
£ = XoArt;J1 oabg : Wg — @X.
Let
(p,V) == Indyy* ¢
denote the induced representation of Wk, of dimension 2r. It follows from Mackey’s theory that p is
absolutely irreducible. Fix an element s € Wi lifting ¢ € Gal(E/K), and define a pairing on V' given by

(fogy= D> fl@)glszs™).
[I]EWE\WKI
Here for each [z] € Wg\Wk, © € Wi is a lift of [x]. Note that this is well-defined because replacing = by
hx gives
F(ha)glshas ) = £() £ (2)g(shs ™ (szs™1)) = E()EP () f(x)g(sws ™) = F(x)g(sws™).
This pairing is clearly nondegenerate. We check (A.1):
(pDfoplsrs™Ng) = > fanglsers™) = > f@)glss).

[]eWE\Wk, [2]€EWE\Wk,
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g.0=Y g@fesT)= Y fl@gls ws) = &%) (fi0(s7)g)-

[z]eWE \WKl [z]eWEg \WKl

Here we use that conjugation by s permutes left Wg-cosets. We claim that &(s?) = 1. In fact, this claim is
independent of the lift s chosen, because for any other lift s’ = hs with h € Wg,

£((s")%) = E(M)E(shs™1)E(s?) = E(ME? (ME(s?) = £(57).

To prove the claim, we let H denote the subgroup of elements of Wi whose images in Gal(E/K) lie in (¢).
Then there is an exact sequence

1—¢&(Wg) — H/ ker(§) — (¢) — 1.

Note that {(Wg) is a finite p-group. So it follows from the Schur—Zassenhaus theorem that there exists a
lift s € W of ¢ satisfying s? € ker(€). In particular, £(s?) = 1, and (A.1) is proved.

We check that p is residually absolutely irreducible: As p factors through Wy /ker(€), which is a finite
group with order dividing 2r¢" for some positive integer M. Thus F,[Im(p)] is a semisimple algebra,
because £ is coprime to 2pr. Thus the same Mackey theory argument implies that p is residually absolutely
irreducible.

The lemma is proved. O

Definition A.1.2. Let £ be a rational prime distinct from p, with a fixed isomorphism ¢, : C =% Q. Let
B be a finite subset of Fy;. A B-avoiding good representation (with respect to t;) is a representation IT of
GLo, (K1) such that there exists some lift F' € Galg of the arithmetic Frobenius element satisfying

e there is a partition n = Zle n; such that II is an isobaric sum of distinct representations II; where
each II; is a supercuspidal representation of GL,,, (K1);

e for each 1 < i < k, if we write I1¢ := (TI$)Y, where II? is the conjugate of II; by an element s € W
which maps to ¢ € Gal(K;/K), then there is an isomorphism f; : T1¢ = TI; satisfying (f)* = fi;

e the Galois representation vy reco, (IT) : Wy, — GLa,.(Qy) attached to IT via local Langlands maps F2
to an element with generalized eigenvalues {a;, ..., aq,} in which «; is an f-adic unit with residue
not in B for every 1 <i < 2r.

Suppose I is a constituent of an unramified principal series of GLq,. (K1) with Satake parameter a(Ily) =
{B1,...,Bar}. If 14(B;) is an f-adic unit for every 1 < i < r, then we say a representation II of GLy,.(K7) is
ITp-avoiding (with respect to ¢¢) if it is B := {—q, qte(B1), - - -, qte(Bar) }H(mod £)-avoiding.

For a given finite subset B C Fy, constructing B-avoiding good representations is more complicated than
we expected. In fact, we do not know how to construct supercuspidal B-avoiding good representations.
Nonetheless, we have the following result which is enough for our purpose.

Lemma A.1.3. Let £ be a rational prime distinct from p, with a fized isomorphism o : C = Qq. Suppose
{ is coprime to 2pr. For any finite subset B C Fy, a B-avoiding good representation exists. We can further
ensure that the generalized eigenvalues {a, ..., s} as defined in Definition A.1.2 satisfy

¢ ¢ {aia; "1 <i#j<2r}U{aill <i<2r} CFy

Proof. By local Langlands correspondence for GLo,. (K1), it suffices to construct
e a 2r-dimensional representation (p,V) of Wg, with Qg-coefficients that is a sum of r distinct 2-
dimensional irreducible representations,

e a lift F' € Wi of the arithmetic Frobenius element,
e alift s € Wk of c € Gal(K;/K), and

e a nondegenerate pairing (—, —): V x V — Qy

satisfying
(1)
(p(T)f.p(s7s7")g) = (f,9)
(42 {(g, £y ={f.p(s*)g)

for all 7 € Wk, and f,g € V; and
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(2) The eigenvalues {az, ..., a2} of p(F?) are f-adic units with residues not in B, and
¢ ¢{oo; "N <i#j<2r}U{a|l <i<2r} CFe

Let R/K be a quadratic ramified extension and let £ = RK;. Let O denote the ring of integers of E
with maximal ideal mg. Let 7 denote the nontrivial element of Gal(R/K) = Z/27. Then there is a natural
identification

Gal(E/K) = (1) x {c) 2 Z/2Z x 7/ 27.
Let W C Wk, C Wk denote the corresponding Weil groups, and let abg : Wg — W]%b denote the
Abelianization map. Let the Artin map

Arty : EX 5 W}‘}b

be normalized so that uniformizers are mapped to geometric Frobenius classes. Choose a uniformizer wpr of
R with 7(wg) = —wg.
Recall the group decomposition

E* =(wgp) x k) x UL, Up=1+mpg,

where k7 embeds into K¢ via the Teichmiiller lift [—] : kK — K. Since p > 2, the p-adic logarithm
)kt
log: UL —»mp:1+x Z &
kEZy

is a continuous group homomorphism and is Gal(F/K)-equivariant. We extend log to a map E* — mg by
setting log(wwr) = 0 and log |H1x =0.

Let dg denote the different exponent of K, so the different ideal dx of K over Q, satisfies 0 = m%‘ .

Let ex denote the ramification index of K, and set ky = LQe—KJ + 1. Fix a positive integer m > kg to be

p—1
determined later. Let
2mix

——X
Vo, :Qp = Qv 12— e
denote the standard additive character of Q, of conductor 0, and set

Vg =Yg, (trK/Qp(w;{d"_mz)> , VUp:i=Vgotrgk

Then Vg is an additive character of E of conductor 1 — 2m.
Foreach 1 <i <7, let x; : EX — @X denote the character given by

xi(x) == Up(p' ‘wrlogx), =€ E*.

Set ¢ = 7c € Gal(E/K). Then x = xT = x; ' # x; for every 1 < i < r. It is clear that x; # xjt for
1 <i < j <r. Here we use that m’,}o C log(E™). Set

&= xi oArtE1 oabg : Wg H@X, 1<i<r.
For each 1 <i¢ <7, let
(Pzw Vz‘) = Ind%;l &i

denote the induced representation of Wi of dimension 2r. And we define

r

(p,V) = @(Pzﬂ/ﬂ

i=1
It follows from Mackey’s theory that p is a direct sum of r distinct 2-dimensional absolutely irreducible
representations. Fix any element s € Wi lifting ¢ € Gal(E/K), and define a pairing on V; given by

(1o f) g g ) =3 Y fila)gi(szs™).

i=1 [2]€Wg\ Wi,

Here for each [z] € Wg\Wk, © € Wk is a lift of [x]. The same argument as in the proof of Lemma A.1.1
shows that (A.2) holds.
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We compute the Frobenius eigenvalues of the residual representation of p. Fix a lift Fy € Wy of
¢ € Gal(E/K). For each t € Ig, F = tFy is also a lift of ¢ € Gal(E/K). The characteristic polynomial of
p(F?) is

For each 1 < i < 7, note that
G(F?) = &(F)VE (p' 'wrtre/r(log Aty abp(i)))
= {(Fy)¥q, (trK/prI_{dK_mtrR/K (2p" " 'wptrp r(log Art ' abE(i)))> .
When t varies, log Art ' ab (t) ranges over all elements in m%. Since F/R is unramified, trp, r(log Art;'abg(t))
ranges over all elements in m’}f, and
trr/K (2p1_intrE/R(log AI‘tEl abE(i)))
ranges over all elements in m];?. Thus when ¢ varies,
g, (trK/@pw;(dK_mtrR/K (2p" 'wptrp, g (log Art ' abE(z')))>

—k
L=

can be every p -th roots of unity in Q. Thus, when s is large, it is clear that we can take some ¢ € I
such that &;(F?) is not contained in the set

{t*'b e Byu{q™, ¢} C Ty

for every 1 <i < 7. As a result, p(F?) has no eigenvalues in B.
Similarly, when s is large, we can further assume that ¢ € Ig is chosen so that each of the elements

G(F2)E(F?) = G(EG) Ve (0" +p')wrtrp/r(log Arty' abp(i)), 1<i<j<r

and

= =1 ; ; _ . .
fi(FQ)fj (F2) = §i(F02)\1/E ((pl_l —pl_J)thrE/R(log AI“tEl abE(z))) , 1<i<r
is not contained in {¢*?} C FFy.
The desired properties of p are all proved. O

A.2. Special self-dual local Galois representations. Let p be an odd rational prime, and let K be a
finite extension of Q,. Let x denote the residue field of K, of cardinality ¢. let Ok denote the ring of integers
of K with maximal ideal mg. Fix a uniformizer wg of K.

Definition A.2.1. Let £ be a rational prime distinct from p, with a fixed isomorphism ¢, : C = Q,. For a
finite subset B C Ty, a supercuspidal B-avoiding good representation (with respect to ¢,) is a supercuspidal
representation IT of GLa,(K) such that there exists some lift F' € Galk of the arithmetic Frobenius element
satisfying

e there is an isomorphism f : IV =5 II satisfying fV = f.

e the Galois representation iy recy, (II) : Wx — GLo,.(Qy) attached to IT via local Langlands maps F
to an element with generalized eigenvalues {a1, ..., a2} in which «; is an ¢-adic unit with residue
not in B for every 1 < i < 2r.

If Iy is a counstituent of an unramified principal series of GLo,.(K) with Satake parameter a(Ily) =
{P1,..., P2}, then we say a representation II of GLy,(K) is IIp-avoiding if it is B-avoiding for

B :={#+1, +qtt L :i:qi4r} U {q1/2ﬂ1, - ,ql/QﬂQT} c F,.

Lemma A.2.2. Let { be a rational prime with an isomorphism v, : C = Qq satisfying £ 1 2pr. For any
finite subset B C Fy, a supercuspidal B-avoiding good representation I1 exists. Moreover, we can make sure
that vy reca,. (1) is absolutely residually irreducible. If ¢* — 1 is not divisible by ¢, we can further make sure
that the generalized eigenvalues {aq, ..., aq.} as defined in Definition A.2.1 satisfy

q ¢ {taia; |1 <i#j<2r}U{tail <i<2r} CFo
Proof. Tt suffices to show that we can find a residually absolutely irreducible 2r-dimensional representation

(p, V) of Wy with Q-coefficients and a lift F' € Galg of the arithmetic Frobenius element satisfying
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o there exists a Wi-invariant nondegenerate Q,-valued symmetric pairing on V;
e the eigenvalues {ag, ..., a9} of p(F) are f-adic units with residues not in B; and
[ ]

q ¢ {taia; 1 <i#j<2r}U{dail <i<2r} CFo

holds if ¢?" — 1 is not divisible by £.
Choose U/K unramified of degree r with Frobenius class ¢, and R/K ramified quadratic with Galois
group Gal(R/K) = {1,7}. Set E = UR. Let Op denote the ring of integers of F with maximal ideal mgp.
Then there is a natural identification

Gal(E/K) = (¢) x (1) X Z/rZ x 7] 2Z.
Let Wi C Wi be the corresponding Weil groups, and let abg : Wi — W2P denote the Abelianization map.
Let the Artin map
Artp : BX = WaP
be normalized so that uniformizers are mapped to geometric Frobenius classes.

Let sy denote the residue field of U. Choose a uniformizer wpg of R satisfying 7(wg) = —wg. Recall
the decomposition

E* =(wg) x ks x U, Up=1+mg,

where k(5 embeds into K* via the Teichmiller lift [—] : x; — K*. Since p > 2, the p-adic logarithm
k+1
—x
log:Uf —»mp:1+x— Z %
keZ,

is a continuous group homomorphism and is Gal(E/K)-equivariant. We extend log to a map E* — mg by
setting log(wg) = 0 and log |, x = 0.
U

Let dg denote the different exponent of K, so the different ideal dx of K over Q, satisfies dx = mf(K .

Let ex denote the ramification index of K, and set kg = L%J + 1. Fix a positive integer s > kg to be
determined later. Let

Vg, : Qp — @X e L™

denote the standard additive character of Q, of conductor 0, and set

Vg = \I/Qp (tI‘K/@p(wI_(dK_SZL')) s Up =Wgo tI'E/K

Then Vg is an additive character of E of conductor 1 — 2s.

Take an element 7 € k) satisfying

(1) 77 # 47 for every 1 <i <r —1, and

(2) trnU/rc(ﬁ) 7é 0.
Such an element 7 exists by normal basis theorem. Indeed, we can take 7 such that

{o"@o<i<r—1)

is a k-basis of k. Set a = wg[7y]. Then

(1) 7(a) = —a, and

(2) o(a) — a € mg ~ m% for every nontrivial element o € Gal(E/K).

Let x: E* — @X denote the character given by
x(z) :=V¥g(alogz), =€ E*.
Then ™ = x !
Set

and x7 # x for every nontrivial element o € Gal(E/K). Here we use that mIgJ C log(E™).

= XoArt;Jl oabg : Wg — @X.
Let

(p, V) :=TIndypX &
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be the induced representation of Wi of dimension 2r. It follows from Mackey’s theory that p is absolutely
irreducible. Fix any element y € Wi lifting 7 € Gal(E/K), and define a pairing on V' given by

(fg):=" >  flagly o).
[:E]EWE\WK
Here for each [x] € Wp\Wk, v € Wk is a lift of [z]. Note that this is well-defined because replacing x by
hx gives
f(ha)g(y™ ha) = £(h) f(x)g(y~ hy(y~ ) = E(MET (M) f(2)g(y~ x) = f(x)g(y™ ).
This pairing is clearly W -invariant and nondegenerate. We check that it is symmetric:

(foy= >,  flgly ')

[z] eEWg \WK

= > flywy Hglay™)

[r] eEWEg \WK

= > flyx)g)

[:C]EWE\WK
=¢0”) Y. 9@ fy ')
[I]EWE\WK

=7 (g, /)

Here we use that conjugation by y permutes left Wx-cosets. We claim that £(y?) = 1. In fact, this claim is
independent of the lift i chosen, because for any other lift v’ = hy with h € Wg,

(")) = E(M)E(yhy™)E(y?) = E(MET(ME(Y?) = E(y°).
To prove the claim, we let H denote the subgroup of elements of Wx whose images in Gal(E/K) lie in (7).
Then there is an exact sequence
1—&Wg) — H/ker(§) — (1) — 1.

Note that £(Wg) is a finite p-group. So it follows from the Schur—Zassenhaus theorem that there exists a
lift y € Wi of 7 satisfying y? € ker(¢). In particular, £(y?) = 1, and the form (—, —) is symmetric.

We check that p is residually absolutely irreducible: As p factors through Wi/ ker(€), which is a finite
group with order dividing 2rq"(?s=3). Thus F,[Im(p)] is a semisimple algebra, because ¢ is coprime to 2pr.
Thus the same Mackey theory argument implies that p is residually absolutely irreducible.

We compute the Frobenius eigenvalues of the residual representation of p. Fix a lift Fy € Wg of
¢ € Gal(E/K). For each t € Iy, F = tF, is also lift of (¢) € Gal(E/K). The characteristic polynomial of
p(F) is

Xp(r) (X) = (X7 = E(FM)) (X" = €(F)7H).
Note that

E(FT) = &(Fg) ¥ (atrp)r(log Artg' abp(i)))
= {(Fy)¥q, (trK/pr;(dK_strR/K (trE/R(a)trE/R(log Art;1 abE(i)))) .
It follows from the choice of + that
trp/r(0) = @Wrtrg/pY € Mp N M7,

When t varies, log Art,' abg (t) ranges over all elements in m4?. Since E/R is unramified and tre/r(a) €
mp \ Mm%, trg r(log Art];1 abg(t)) ranges over all elements in m%’, and

trr/K (trE/R(a)trE/R(log ArtEl abE(i)))

ranges over all elements in m];g. Thus when ¢ varies,

To, (trK/pr;(dK_strR/K (trg/r(a)trg p(log Arty' abE(i))))
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s—ko .
can be every pL % J_th roots of unity in Qg. When s is large, it is clear that we can take some ¢ € Ig such

that £(F") is not contained in the set
{v*7b € BYu{(xq)™"} C Fe.
As a result, p(F) has no eigenvalues in B. Moreover, if ¢>" — 1 is not divisible by /, it is clear that
q¢{taia; 1 <i#j<2rfU{tal <i<2r}CTFy

is satisfied.
The desired properties of p are all proved. O
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